
AIRBORNE NETWORK OPTIMIZATION
WITH DYNAMIC NETWORK UPDATE

THESIS

Bradly S. Paul, Capt, USAF

AFIT-ENG-MS-15-M-030

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENG-MS-15-M-030

AIRBORNE NETWORK OPTIMIZATION WITH DYNAMIC NETWORK

UPDATE

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Engineering

Bradly S. Paul, B.S.C.P.

Capt, USAF

March 2015

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENG-MS-15-M-030

AIRBORNE NETWORK OPTIMIZATION WITH DYNAMIC NETWORK

UPDATE

Bradly S. Paul, B.S.C.P.
Capt, USAF

Committee Membership:

Maj Thomas E. Dube
Chair

Dr. Kenneth M. Hopkinson
Member

Dr. Barry E. Mullins
Member

AFIT-ENG-MS-15-M-030

Abstract

Modern networks employ congestion and routing management algorithms that

can perform routing when network routes become congested. However, these algo-

rithms may not be suitable for modern military Mobile Ad-hoc Networks (MANETs),

more specifically, airborne networks, where topologies are highly dynamic and strict

Quality of Service (QoS) requirements are required for mission success. These highly

dynamic networks require higher level network controllers that can adapt quickly to

network changes with limited interruptions and require small amounts of network

bandwidth to perform routing. This thesis advocates the use of Kalman filters to

predict network congestion in airborne networks. Intelligent agents can make use of

Kalman filter predictions to make informed decisions to manage communication in

airborne networks. The network controller designed and implement in this thesis will

take in the current and predicted queue size values to make intelligent network opti-

mization decisions. These decisions will enhance the overall network throughput by

reducing the number of dropped packets when compared with current static network

and MANET protocols.

iv

Acknowledgements

I would like to thank my beautiful wife and daughter for their unrelenting support

during this Masters Degree effort. I would also like to express my sincere appreciation

to my faculty advisor, Maj Dube, for his guidance and support throughout this entire

experience. I would also like to thank my committee members, Dr. Hopkinson and

Dr. Mullins for their support throughout this research effort.

Bradly S. Paul

v

Table of Contents

Page

Abstract . iv

Acknowledgements . v

List of Figures . viii

List of Tables . x

List of Abbreviations . xi

I. Introduction . 1

1.1 Background . 2
1.2 Goal . 4
1.3 Research Contributions . 4
1.4 Conclusion . 5

II. Literature Review . 7

2.1 Mobile Ad-hoc Networks . 7
2.2 Airborne Networks . 8

2.2.1 Ad-hoc On-demand Distance Vector Protocol 9
2.2.2 MANET Extension of Open Shortest Path First 11
2.2.3 Optimized Link State Routing . 12
2.2.4 MikroTik Routing Protocols . 12

2.3 Airborne Networking Routing Protocols . 13
2.4 Network Optimization . 15

2.4.1 Kalman Filter . 16
2.4.2 Unscented Kalman Filter . 19

2.5 Network Forecasting . 20
2.5.1 Multi-commodity Flow . 22
2.5.2 Dynamic Route Queue Controller . 24

2.6 Summary . 27

III. Methodology . 28

3.1 Introduction . 28
3.2 Research Objectives . 28
3.3 Research Hypothesis . 29
3.4 Assumptions / Limitations . 29
3.5 Airborne Network . 30

3.5.1 Network Topology . 31
3.5.2 Network Validation . 35

vi

Page

3.6 Kalman Filter . 35
3.7 Dynamic Network Update Controller . 36

3.7.1 Features . 38
3.7.2 Design . 39

3.8 Experiment . 42
3.9 Summary . 48

IV. Results and Analysis . 49

4.1 Introduction . 49
4.2 Network Link Speed Validation . 49
4.3 Kalman Filter Validation . 51
4.4 Static Wait Time Tests . 54

4.4.1 Static Iteration 1 Results . 54
4.4.2 Static Iteration 2 Results . 56

4.5 Gaussian Distribution Wait Time Tests . 61
4.5.1 Gaussian Iteration 1 Results . 61
4.5.2 Gaussian Iteration 2 Results . 64

4.6 Exponential Distribution Wait Time Tests . 68
4.6.1 Exponential Iteration 1 Results . 68
4.6.2 Exponential Iteration 2 Results . 71

4.7 Overall Results . 76
4.8 Conclusion . 76

V. Conclusions . 78

5.1 Research Impact . 78
5.2 Contributions . 79
5.3 Future Work . 79
5.4 Summary . 80

Bibliography . 81

vii

List of Figures

Figure Page

1.1 Global Information Grid Boundary . 3

2.2 Tactical Airborne Network Chararacteristics . 10

2.3 Kalman Filter - Predict Update . 16

2.4 Overview Chart of Kalman Filter Process . 18

2.5 Alqahtani Two Router Design . 20

2.6 Alqahtani Four Router Design . 20

2.7 Haught’s Simulated Network Diagram for Kalman Filter
Validation . 21

2.8 Haught’s Implementation of the Kalman Filter with 1
Second Predictions . 22

2.9 Multicommodity Flow Problem . 23

2.10 Multicommodity Flow Solution . 23

2.11 Multi-commodity Flow Algorithm . 24

2.12 State Diagram of DRQC . 26

3.13 Network Design . 33

3.14 Sample MicroTik’s Queue Configuration . 34

3.15 Sample MicroTik’s Scheduler - Variable Link Speed
Control . 34

3.16 State Diagram of DNUC . 40

3.17 Flow Chart of Node Congestion Process . 41

3.18 Histogram of Gaussian Distribution Delay Times for
Gaussian 1 . 45

3.19 Histogram of Gaussian Distribution Wait Times for
Gaussian 2 . 45

viii

Figure Page

3.20 Histogram of Exponential Distribution Wait Times for
Exponential 1 . 46

3.21 Histogram of Exponential Distribution Wait Times for
Exponential 2 . 46

4.22 Scatter Plot of Static Iteration 1 Results . 56

4.23 Scatter Plot of Static Iteration 2 Results . 59

4.24 Confidence Interval of Static Delay Time Results . 60

4.25 Scatter Plot of Gaussian Iteration 1 Results . 63

4.26 Scatter Plot of Gaussian Iteration 2 Results . 66

4.27 Confidence Interval of Gaussian Distribution Delay
Time Results . 67

4.28 Scatter Plot of Exponential Iteration 1 Results . 71

4.29 Scatter Plot of Exponential Iteration 2 Results . 74

4.30 Confidence Interval of Exponential Distribution Delay
Time Results . 75

ix

List of Tables

Table Page

3.1 Transmission Speed (kbps) Between Nodes . 32

4.2 Network Link Speed Validation . 50

4.3 Queue Size - Actual vs Kalman Filter and Näıve
Predictions . 52

4.4 Queue Size - Actual vs Kalman Filter and Naive
Predictions . 53

4.5 Total Dropped Packets of Static Iteration 1 . 55

4.6 Total Dropped Packets of Static Iteration 2 . 57

4.7 Total Dropped Packets of Gaussian Iteration 1 . 62

4.8 Total Dropped Packets of Gaussian Iteration 2 . 64

4.9 Total Dropped Packets of Exponential Iteration 1 69

4.10 Total Dropped Packets of Exponential Iteration 2 72

x

List of Abbreviations

Abbreviation Page

MANETs Mobile Ad-hoc Networks . iv

QoS Quality of Service . iv

US United States . 1

SA Situational Awareness . 1

DoD Department of Defense . 2

GIG Global Information Grid . 2

NSA National Security Agency . 2

ATO Air Tasking Order . 3

NTO Network Tasking Order . 4

UKF Unscented Kalman Filter . 4

AODV Ad hoc On-demand Distance Vector . 9

OSPF Open Shortest Path First . 11

MME Mesh Made Easy . 12

B.A.T.M.A.N. Better Approach To Mobile Ad-hoc Networking 12

TCP Transmission Control Protocol . 12

RReq Route Request . 14

EKF Extended Kalman Filter . 19

UKF Unscented Kalman Filter . 19

TCP Transmission Control Protocol . 21

UDP User Datagram Protocol . 21

DRQC Dynamic Routing Queue Controller . 21

kbps kilobits per second . 29

xi

Abbreviation Page

Mbps Megabits per second . 29

IP Internet Protocol . 33

DNUC Dynamic Network Update Controller . 35

kb kilobits . 35

RTT Round Trip Times . 35

MTU Maximum Transmission Unit . 43

MANETs Mobile Ad-hoc Networks . 1

QoS Quality of Service . 1

xii

AIRBORNE NETWORK OPTIMIZATION WITH DYNAMIC NETWORK

UPDATE

I. Introduction

Today, more than ever, the United States (US) military relies heavily on airborne

networks to transmit critical battlespace information from air vehicles to comman-

ders on the ground. As the number of airborne vehicles increases, as does the total

amount of information collected. With this increasing amount of collected informa-

tion, it becomes critical to pass this information to the commanders on the ground

to ensure they have the Situational Awareness (SA) to make informed decisions. To

keep up with this demand, network optimization becomes more important to ensure

all information collected is transmitted to its destination. Current routing algorithms

and queue prediction schemes are sufficient for today’s Internet and corporate net-

works but they lack the flexibility and adaptive qualities airborne networks require.

These networks require sufficient optimization in order to transmit data quickly from

node to node to allow military leaders to make informed decisions in their respective

missions. Today’s networking schemes lack the flexibility and adaptive qualities nec-

essary to make immediate routing decisions necessary for airborne networks. The lack

of flexibility often results in inadequate performance, increased packet loss, and a loss

of overall network throughput. Prediction tools and the intelligent agents collecting

network information could be used to reduce packet loss and increase overall network

throughput.

1

1.1 Background

Past research in the area of airborne networks and network flows has made some

progress but many issues are still unresolved. With the dynamic qualities that air-

borne networks possess, the network components must be able to support ever chang-

ing needs. Research in this area has concentrated on network flows [8] and router

queue size prediction [15] to predict when and where changes occur and how to route

network traffic through a network more efficiently and with greater reliability [7].

These intelligent agents have utilized perception to discern current network conditions

and act accordingly with limitation [29]. Past research was limited to simulations of

small-scale, land-based networks [15] instead of emulating networks with variable link

speeds as seen in airborne MANETs.

To ensure that the US is able to maintain a superior war-fighting capability, the

Department of Defense (DoD) continuously explores the latest networking technolo-

gies. The DoD recently invested in the Global Information Grid (GIG) shown in

Figure 1.1, which the National Security Agency (NSA) defines as “the globally in-

terconnected, end-to-end set of information capabilities for collecting, processing,

storing, disseminating, and managing information on demand to war-fighters, policy

makers, and support personnel” [3]. “The GIG is a net-centric system operating in a

global context to provide processing, storage, management, and transport of informa-

tion to support all DoD . . . missions and functions.” It also states “GIG capabilities

are available from all operating locations: bases, posts, camps, stations, facilities, mo-

bile platforms, and deployed cites [3]. With this in mind, the GIG boundary shown in

Figure 1.1 refers to the separation of the deployed network and the GIG itself while

ensuring that the information in the GIG is available to the deployed network.

Aircraft bandwidth is directly proportional to the distance between the two nodes.

For instance, as distance between two aircraft increases, the bandwidth continues to

2

Figure 1.1. Global Information Grid [2]

decrease until the distance becomes too great for the connection to stay alive. On the

other hand, as two aircraft approach one another, the connection speed between them

increases. During military operations, as an aircraft’s position changes throughout the

battlespace, the bandwidth between other aircraft changes as well. This constantly

changing bandwidth creates a highly dynamic airborne network. The dynamic nature

of this type of network requires a queue size prediction scheme to determine when

links could drop and forward this information to control algorithms, thus allowing

these algorithms to make more informed decisions on how to route traffic throughout

the network.

Typically, commanders plan tactical airborne environments at least a day in ad-

vance, in a document called an Air Tasking Order (ATO). This information can be

3

used to create what is called a Network Tasking Order (NTO) [11] in order to supple-

ment prediction tools thus allowing their predictions more viable. Previous research

discovered that such information could enable more optimal network outcomes [15].

Past work has also demonstrated the ability of an agent-based framework to optimize

network behavior using long-term, mid-term, and short-term estimates of network

behavior [25].

1.2 Goal

This research concentrates on three main goals. The first is to expand the use of

prediction tools, i.e. Kalman filter [18] and past networking optimization algorithms

[15]. Secondly, employ these prediction tools in an emulated airborne network. Fi-

nally, use these prediction tools to maximize the use of limited bandwidth available in

airborne networks. This thesis concentrates on the use of the Unscented Kalman Fil-

ter (UKF) [7] to predict queue sizes of routers placed at different points in an emulated

airborne network environment. Making use of these predictions is the responsibility of

a centralized intelligent agent to route network traffic effectively throughout the net-

work to increase overall network throughput. The Kalman filter uses current router

queue size to predict future queue size. If the queue size is predicted to be greater

than a predetermined threshold, network congestion is noted and passed along to the

network controller. At this time, the network control algorithm determines optimal

network paths and reroute network traffic through non-congested routes to ensure

successful transmission of the traffic.

1.3 Research Contributions

This thesis combines several prior research efforts to use the UKF to predict net-

work congestion and through the use of a centralized network controller, maximize

4

throughput in a emulated airborne network. Past research developed the UKF and

other Kalman filters, and network control algorithms to control network flows. Even

though these algorithms have been integrated into simulated and emulated static

network environments, the Kalman filters and control algorithms have not been in-

tegrated into or developed for use on actual network components or in an emulated

airborne network.

This research integrates the UKF into an emulated airborne network and deter-

mines if it can be used to obtain and predict queue size in routers placed throughout.

If integration is successful, these predictions determine if network congestion is present

at any point in the network. If network congestion is predicted, network nodes provide

updates to a centralized network controller. The network controller makes routing

decisions based on updates provided by the network nodes. The routing decisions

determine the best network route for each node that provides updates. Routing in-

formation is based on the latest update received. If network nodes fail to provide

updates, routing information may be outdated. The new routing information is made

available, upon request, to all network nodes. The routing information contains in-

dividualized network route changes to minimize network congestion, reduce latency,

and improve the overall network throughput.

1.4 Conclusion

The dynamic nature found in airborne networks requires a highly specialized net-

work controller. A queue size prediction scheme in conjunction with a network control

algorithm could fill this need and enhance overall network effectiveness which is an

important factor for today’s airborne environments. Insight into the challenges faced

by these types of networks and how to mitigate the challenges is the crux of successful

information gathering in airborne environments.

5

The following is an overview of the chapters discussed in this thesis:

II - Provides necessary background information to demonstrate the research that

has already taken place in the area. The literature review also provides an

introduction into the terminology and concepts referenced in this document.

III - Provides an overview of the methodology to test the concepts described herein.

IV - Presents the results and an analysis of the data gathered from the experiments.

V - Overall conclusion and general remarks for future work in this area.

6

II. Literature Review

This chapter discusses research that was previously accomplished in the areas of

network prediction tools and intelligent agents in corporate, military and airborne

networks. This chapter provides the necessary background to define the problem and

discuss current technologies currently in practice today. It is presented in a top-down

approach starting with MANETs, replication of a dynamic airborne environment,

network prediction tools and finally network controllers. This chapter also explains

the Kalman filter, the algorithm used for network prediction, used in conjunction with

a network controller to improve overall network efficiency in a MANET by forecasting

when links are becoming congested.

2.1 Mobile Ad-hoc Networks

A MANET is a collection of mobile nodes that generate a network automatically

by creating several short-lived radio frequency links based on node proximity and

mutual agreement [20]. This research concentrates on an airborne MANET, more

specifically, a collection of airborne platforms in use by the U.S. Military. A MANET

relies on the use of wireless technologies to perform communication between two+ air-

borne devices, between airborne platforms and a ground station, or between airborne

platforms and satellites. As with all wireless technologies, the data rate between two

devices is dynamic in nature due to distance between the devices. When the dis-

tance between two devices decreases, the link speed increases and conversely, the link

speed decreases as the distance between the two devices increase. Each node within

a MANET comes equipped with wireless receivers and transmitters. Antennas on a

device may be omni-directional, highly directional, or possibly steerable [6].

7

The bandwidth between the two devices is directly related to the distance between

them. As distance increases, the data rate between the two devices decreases until the

distance is too great to support communication at which time, the communication

link drops completely. If the communication link between two devices drops, a third

node, that maintains communication with both devices, may act as an intermediate

node and route network traffic between the two devices. Every node in the network

participates in a protocol that facilitates the discovery of multi-hop paths throughout

the network to any other node [17].

Every node in a MANET is highly mobile and independent of other nodes, there-

fore, the MANET is highly dynamic and ever evolving where link speeds among nodes

change frequently. This type of network requires routing protocols that are just as

highly dynamic as the MANET itself. Thus the primary challenge of a MANET is

capturing the current network state to properly route traffic throughout the network.

Conventional networks rely on link-state or distance-vector algorithms to maintain

the correct routing information. Using either one of these algorithms presents issues

as well. First, sending periodic updates throughout the network requires using an

already limited bandwidth. Second, with the highly dynamic nature of a MANET,

the network configuration may change too quickly for routing protocols to maintain

up-to-date network information [19].

2.2 Airborne Networks

In today’s world, airborne networks are extremely important to gather intelligence

data and transmit that data to users on the ground so those users have the information

they need to make informed decisions. In an article by B. Cheng [10], he discusses

traditional tactical airborne networks (shown in Figure 2.2) which he describes as

having the following issues.

8

• Long transmission ranges - Typical ranges vary from 100-300 nautical miles

[10].

• Low data rates - Tactical airborne networks speed range from 250Kbps -

2Mbps throughput [10].

• Dynamic data rates - Data rates in tactical airborne networks can vary data

rate and transmit power on a per flow basis. Even between a pair of nodes,

packets are sent at different data rates and transmission power [10].

• Differing multicast and unicast rates - Multicast and unicast data rates

can vary depending on the ability of the node to adjust transmit data rates on

a per flow basis [10].

• Large range in relative speed - Due to the distances between aircraft, the

speed of the aircraft, and direction of travel, the time an aircraft takes to traverse

the transmission region can vary between 3 - 72 minutes [10].

• Periodic and sporadic mobility patterns - Some aircraft have highly reg-

ular flying patterns while other aircraft may have to engage targets outside

communication range making them sporadic [10].

• Periodic and bursty traffic - Again, some aircraft may have regular network

traffic while other aircraft may have short bursts of traffic [10].

2.2.1 Ad-hoc On-demand Distance Vector Protocol.

The Ad hoc On-demand Distance Vector (AODV) protocol is the preferred pro-

tocol for use in a MANET. Several factors are appealing for use in these highly

dynamic networks. AODV requires low network utilization, processing power, and

memory overhead compared to other networking protocols. AODV is able to adapt

9

Figure 2.2. Tactical Airborne Network Chararacteristics [10]

quickly to dynamic link conditions and determine unicast network routes within a

MANET, unlike static network protocols [12]. AODV requires only two addresses

to create a route from one node to another, the designation, and next hop. These

features make AODV the preferred network protocol for MANETs [9].

When it comes to MANETs, AODV has some disadvantages also. First, since

AODV uses a portion of the network bandwidth to learn routing information, this

network traffic increases the overhead of an already taxed network infrastructure.

Secondly, AODV is not optimal for a MANET because of the highly dynamic nature

of the network. This dynamic quality leads to network routing information to become

out-of-date quickly, leading to incorrect routing tables, requiring routing updates to

be made more often [19]. The disadvantages listed above are not limited to AODV,

but rather, they are inherent problems with any network protocol running on this

type of network.

10

2.2.2 MANET Extension of Open Shortest Path First.

Open Shortest Path First (OSPF) is a good solution for static networks where link

states are stable. In situations where link states are highly dynamic such as airborne

networks, OSPF is not the best routing protocol to use. Scaling issues regarding

the flooding protocol operation, inability of the designated router election protocol

to converge in all scenarios and the large number of adjacencies when using a point-

to-multipoint interface type make OSPF unviable for use in dynamic networks [23].

According to a study done in 2009 by Z. Wang and J. Crowcroft, “In a dynamic

network environment under heavy traffic load, shortest-path routing algorithms, par-

ticularly those that attempt to adapt to traffic changes, frequently exhibit oscillatory

behaviors and cause performance degradation” [30]. The limitations of OSPF are

well known which led to the creation of an OSPF extension in 2009 to support net-

works deployed in MANET configurations. More specifically, this extension supports

broadcast-capable, multi-hop wireless networks in which the host and other network

devices are mobile [23].

The OSPF extension has several factors that make it appealing for MANET con-

figurations. First, the modification of hello packets using OSPF link-local signaling

and it serves two purposes: to provide neighbors with two hop neighbor information

as well as differential hellos that are sent more frequently without a significant in-

crease in overhead, in order to respond more quickly to topology changes. In MANET

configurations, each router must advertise some or all of its MANET neighbors as

point-to-point links in its router link state advertisement. To reduce the amount of

overhead, the choice of which neighbors to advertise to is flexible, directly reducing

the amount of topology information that is passed across the network.

11

2.2.3 Optimized Link State Routing.

Optimized Link State Routing (OLSR) protocol is a proactive, table driven routing

protocol designed specifically for use in MANETs [13]. OLSR incorporates the use

of Multi-Point Relays (MPRs) which are nodes in MANETS that relay messages

between nodes. Besides relaying messages between nodes, the main role of the MPRs

is routing traffic and selecting the proper route for traffic flowing between source

and destination nodes. OLSR maintains routes to every destination in the network

requiring the use of memory. Also, the job of gathering and maintaining all of the

routes is computationally taxing on the system, on the order of O(n2) [13].

In OLSR, the node first sends hello packets and selects the multi-point relay

nodes that relay a node for flooding. The node then floods topology control messages

through the multi-point relay nodes and constructs an overall routing table of the

network. The OLSR protocol maintains connectivity information on the latest two

hop nodes and the multi-point relay node by continuously flooding hello packets

[14]. The continuous flooding of hello packets throughout the network decreases the

amount of bandwidth for data that requires transmission especially in networks with

low bandwidth limitations as in the case of airborne networks.

2.2.4 MikroTik Routing Protocols.

MikroTik router OS includes several protocols that can be utilized, two of which

are discussed. The first is Mesh Made Easy (MME). According to the MikroTik user’s

manual, “MME is a MikroTik routing protocol suited for IP level routing in wireless

mesh networks [4].” MME is based on ideas from Better Approach To Mobile Ad-hoc

Networking (B.A.T.M.A.N.) routing protocol for multi-hop ad-hoc mesh networks [1].

As explained in the MME user’s manual, “MME works by periodically broadcasting

Transmission Control Protocol (TCP) packets so called originator messages.” MME

12

does not maintain network topology information and therefore is not able to calculate

a routing table, nor does need to. MME keeps track of lost packets by scanning

originator message packets received and their corresponding sequence numbers. If

sequence numbers are missing, MME is able to determine the number of lost packets.

By using this information and using the combinations of originators and single-hop

neighbors, MME is able to find the best route to a particular destination instead of

using a routing table [4]. The MikroTik router OS also includes OSPF version two.

According to MikroTik, “The OSPF protocol is the link-state protocol that takes care

of the routers in the dynamic network structure that can employ different paths to

its subnets. It always chooses shortest path to the subnetwork first.” [4].

2.3 Airborne Networking Routing Protocols

While studies of MANET routing protocols have increased over the last couple

decades, the focus of these studies have been on mesh and ground networks leaving a

void in airborne networks. Currently, two different types of routing protocols are in

use, static and dynamic routing protocols. Static routing is simply the manual entry of

routes into the routing table. The router looks through the routing table to determine

the path for the route. As stated, this method requires manual entry of routing

information and is not considered a protocol. Static routing has a couple inherent

problems: a large number of networks maintain too many routes to manually be input

and large delays due to rerouting network traffic due to outages exists. Dynamic

routing on the other hand are protocols where software applications actively seek

out connections and network routes to destinations. In a dynamic routing protocol,

the router learns its directly connected neighbors first and then each router tells its

neighbors the routes that they know thus propagating this information throughout

the network. After sorting through the list of routes, the protocol determines the best

13

route to each network it has traffic destined to. The sharing of routes gives dynamic

routing protocols the ability to adapt to network topology changes or outages.

Along with static and dynamic routing protocols, three major categories of ad-hoc

routing protocols exist: reactive, proactive and hybrid. Reactive protocols determine

routes on-demand which limits the amount of traffic transmitted across the network.

Since network paths are determined on an as needed basis, this eliminates the constant

updating of routing tables. Since each route is determined as needed, the route

discovery process is on-demand by flooding Route Request (RReq) packets throughout

the network [28].

Proactive routing consists of each network node uses their own routing table to

establish network connections to other nodes in the network. Each node records

discovered destinations and the respective number of hops to the discovered node

in the routing table. A sequence number, created by the destination node, is also

recorded in the routing table. To ensure accuracy of the routing table, each node

broadcasts and modifies their routing table from time to time. Due to the amount of

network traffic generated to update routing tables, proactive protocols are appropriate

for networks with a limited number of nodes [28].

Hybrid protocols incorporate the merits of proactive as well as reactive routing

protocols. A hybrid routing protocol should use a mixture of both proactive and

reactive approaches [24].

With the dynamic nature of airborne networks, static routing is not feasible.

Inherent problems exist when trying to apply dynamic network protocols designed

for static networks into MANETS. Overhead in terms of bandwidth and processing

requirements limits the use of these protocols in airborne networks or a MANET.

Flooding packets throughout these networks cause unnecessary overhead on a link’s

capacity, potentially creating many transient routing loops. These problems limit

14

scalability of the routing protocols to such large routing areas and limit the protocol’s

use to static networks.

2.4 Network Optimization

Network state prediction and network control play important roles in network

optimization. Past research have shown that the possibility exists to implement

automatic network controllers to adjust routes throughout the network for the purpose

of congestion control and route optimization [15]. Prediction schemes predict the

future network states and pass this information to the network controller for route

optimization. Using a prediction model allows the network controller to make accurate

decisions and mitigate network congestion and utilize limited network resources more

efficiently. As with any prediction tool, the prediction interval should be large enough

to offset any delays caused by network congestion but be small enough to make

accurate predictions. Queue size at any given time depends on the bandwidth of the

link and the amount of traffic on that link at any given time. At one point in time, the

network link could be empty whereas the next second, the link could be completely

saturated. The dynamic nature of network traffic equates to a ever-changing router

queue size in a nonlinear system, especially in an airborne network where link speeds

are constantly changing.

In current MANET routing schemes, routing changes use a significant amount

of bandwidth to make routing changes throughout the network. A prediction tool,

that predicts when and where congestion occurs, can be utilized to reduce network

overhead and allow for efficient use of network bandwidth.

Prediction tools have the flexibility to predict at different intervals into the future.

The prediction tool must predict far into the future so predictions of network traffic

maintain accuracy. Past research has shown that the prediction accuracy decreases as

15

the prediction interval increases [15]. Automatic network controls making decisions

based on erroneous predictions, can deteriorate overall network performance [27].

2.4.1 Kalman Filter.

The idea of the Kalman filter was developed by Dr. Rudolph E. Kalman in 1960 to

aid in spacecraft navigation. The Kalman filter is a least mean square algorithm that

is capable of estimating an unknown state of dynamic processes. The filter is a set

of mathematical equations used to estimate the future state of a dynamic system by

using the previous estimated state mathematically combined with the current state.

A Kalman filter is a recursive solution for a linear filtering problem. The Kalman

filter involves determining a predicted value of a system when given a set of noisy

measurements from that system. The Kalman filter supports predictions of past,

present and future states of a given system.

The Kalman Filter has two main states, predict and update, as shown in Figure

2.3. Figure 2.3 shows how the Kalman filter estimates the next state using only the

previously estimated value and the current value, therefore, no other predictions or

state values are needed. The predict phase, called the a priori state, is the current

time step estimate. The update phase, known as the a priori prediction, is the current

state value. The a priori prediction is captured in the refined state estimate called

the a posteriori state estimate [15].

Maybeck modeled the Kalman filter from:

Figure 2.3. Kalman Filter - Predict Update Process [22]

16

xk = Fkxk−1 +Bkuk + wk [21], (2.1)

where

• Fk is the state transition model and applied to the previous state of the model,

• Bk is the control-input model and applied to the control vector uk,

• wk is the process noise from a zero mean normal distribution with covariance

Qk in:

wk ≈ N(0, Qc) [21]. (2.2)

At time k a measurement zk of the true state xk is according to

zk = Hk + vk [21], (2.3)

where Hk is the observation model that maps the true state space into the observed

space and vk is the observation noise which is assumed to be zero mean Gaussian

white noise and covariance Rk in:

vk ≈ N(0, Rk) [21], (2.4)

The state of the Kalman filter is represented by two variables:

1. x̂k|k is a posteriori state estimate at time k given observations up to and in-

cluding at time k [21], and

2. Pk|k is a posteriori error covariance matrix, which is a measure of estimated

accuracy of the state estimate [21].

17

Figure 2.4. Overview Chart of Kalman Filter Process [15]

The function x̂n|m represents the estimate of x at time n given observations up to,

and including time m [21].

The Kalman filter uses two different mathematical update methods: time update

and measurement update. The time update equation uses error covariance to attempt

to predict the future state and passes the information to the measurement update.

The measurement update then passes the new estimate to the process using the data

as well as back into the time update which uses this new prediction to predict the

next value [21]. The summary of this process is shown in Figure 2.4.

18

2.4.2 Unscented Kalman Filter.

Past research has tested a couple types of Kalman filters (Extended [15] and

Unscented [7]). The most common approach is the use of the Extended Kalman Filter

(EKF) which simply linearizes all nonlinear models to make use of the traditional

linear Kalman filter [16]. According to Julier, “Although the EKF is a widely used

filtering strategy, over thirty years of experience with it has led to a general consensus

within the tracking and control community that it is difficult to implement, difficult

to tune, and only reliable for systems which are almost linear on the time scale of

the update intervals” [16]. Two main drawbacks by the EKF are: linearization can

cause the filter to become highly unstable when there is a violation of the assumptions

of local linearity and the derivation of the Jacobean matrices are nontrivial in most

applications and make implementation difficult [16]. For these reasons, the Unscented

Kalman Filter (UKF) was developed. The UKF is a novel method for calculating the

statistics of a random variable which undergoes a nonlinear transformation. The

UKK is better suited than linearization for filter applications.

UKF was recently researched by Alqahtani [7]. Alqahtani’s research consisted of

tests on two different network models. The first model consisted on a two router

design shown in Figure 2.5. Alqahtani used the first model to test three different

types of filters and two prediction periods: a basic filter, EKF, and UKF and 1

second, and 5 seconds prediction times. According to Alqahtani “The UKF gave the

best prediction performance compared with other filters [7].

The second model was a four router design shown in Figure 2.6. For the second

model, Alqahtani used the filter queue size state prediction model result and fed it

into the queue controller. The queue controller was used, and according to Alqahtani,

the number of packets dropped was reduced and improved network performance [7].

19

2.5 Network Forecasting

The Kalman filter is used to estimate the future queue size to aid in the process of

forecasting network congestion. If the Kalman filter correctly predicts a router’s queue

size and in-turn network congestion. The correctly predicted network congestion

passed along to a network controller what aids in relief of this congestion by sending

Figure 2.5. Alqahtani Two Router Design [7]

Figure 2.6. Alqahtani Four Router Design [7]

20

data through different routes in the network. Haught performed several simulations

testing the concept of the Kalman Filter to predict network queue size [15]. The

simulation network consisted of 14 nodes with five different Kalman filters placed in

key locations throughout the network as shown in Figure 2.7.

All router queue’s had a maximum queue size of 1000 packets. Network traffic

for Haught’s research consisted of Transmission Control Protocol (TCP) and User

Datagram Protocol (UDP) packets. The Kalman filters accurately predicted the

queue size every second for 500 seconds of simulation time. The Kalman filter’s

accuracy declined if predicting too far into the future. Haught discovered that the

predictions were most accurate when predicted second into the future (see Figure

2.8).

Haught performed several different simulations using the network described above

and adding a Dynamic Routing Queue Controller (DRQC) that acted as a network

controller [15]. This network controller managed the network traffic in the network by

Figure 2.7. Haught’s Simulated Network Diagram for Kalman Filter Validation [15]

21

Figure 2.8. Haught’s Implementation of the Kalman Filter with 1 Second Predictions
[15]

adjusting the routes throughout the network based on network congestion. Haught

used the Kalman filter to predict the router queue size. When the router queue size

prediction exceeded a threshold, it was noted as network congestion. Kalman filters

were placed at the strategic locations throughout the network. Using the DRQC

to control the network flow, overall network congestion was reduced and network

throughput increased. Haught also discovered that using the Kalman filter to predict

router queue size, increased the overall DRQC performance [15].

2.5.1 Multi-commodity Flow.

Current networks implement a shortest path algorithm to determine the route

for network traffic. The shortest path algorithm does not achieve the desired results

in environments where the nodes are constantly moving as in the case of airborne

networks. Wang did some studies in this field and discovered that in a dynamic

network with higher than average network traffic, the shortest path algorithms have

performance issues due to oscillatory behaviors, especially in networks that that try

and adapt to traffic changes [30].

22

Multi-commodity flow paradigm is a network flow paradigm that maximizes the

amount of network traffic that is able to travel across a network from multiple

sources to their respective destinations where each link is subject to differing ca-

pacity constraints. A multi-commodity flow consists of a set of ordered pairs of

vertices (s1, t1), (s2, t2), . . . , (sk, tk) where each pair represents a commodity with a

source si and a target ti. For each commodity (si, ki) the commodity specifies a non-

negative demand di [5]. The objective of the multi-commodity flow is to maximize

the amount of traffic flow traveling from multiple sources to their corresponding des-

tinations simultaneously as shown in Figure 2.9. Figure 2.9 demonstrates s1 sending

traffic to t2 while s2 is sending traffic to t1. Figure 2.10 presents a solution to the

multi-commodity flow problem using fractional flows. This solution allows 100% of

traffic to travel from nodes s1 and s2 to their respective destinations.

Betances implemented a breadth-first search algorithm to maximize the amount

of flow traveling from various sources to their corresponding destinations all subject

on the individual link capacity constraints [8]. The algorithm computes an approxi-

mation using fractional flows in order to minimize the computing resources required.

Figure 2.9. Multicommodity Flow Problem d1 = d2 = 1 [5]

Figure 2.10. Multicommodity Flow Solution to Problem in Figure 2.9 [5]

23

The algorithm works as follows. First, the algorithm initialized all edge lengths of

the topology. The initial length is small and is the base to exponentially increment the

lengths as flows congest edges [8]. Next, the algorithm cycles through commodities

lengthening edges based on a feasible shortest path routing. Once the path is known,

an increase is made to the edge lengths l(e) associated with this path to avoid over

utilization of a particular edge [8]. The exit condition of the algorithm is when the

sum of all edge weights (D(l)) is greater than one. A constraint is set on the maximum

error by the value of ε, the constant used to increment the edge lengths l(e) [8]. Figure

2.11 illustrates the pseudocode of the algorithm.

2.5.2 Dynamic Route Queue Controller.

Haught developed the idea of the DRQC, a centralized network controller that

reroutes network flows based on flow priority, queue predictions, and network con-

gestion [15]. The implementation of the DRQC uses the Kalman filter to predict the

state of the network and optimize the network flow based on that prediction. The

Kalman filter predicts the queue size of routers placed throughout the network and

Figure 2.11. Multi-commodity Flow Algorithm [8]

24

when the queue size prediction is above a predetermined threshold, the controller de-

termines the network is congested. When the controller detects network congestion, it

adjusts the network to reduce or eliminate the congestion. The DRQC is a centralized

network controller to maintain the network by reading data points throughout the

network. Another feature of the DRQC was to allow for prioritized network flows thus

allowing packets to contain differing levels of priority. This priority leveling allows

higher priority traffic to utilize network bandwidth when the network is congested.

The main purpose behind the DRQC was to show that controller can use the Kalman

filter predictions to optimize a network.

The DRQC has five main features:

1. Priority routing - changes network flows with respect to the priority

2. Priority flow control - starting and stopping flows according to priority

3. Prediction detection - controller’s ability to utilize Kalman filter queue size

predictions

4. Dynamically split flows - allows that controller to split flows

5. Flow reactivation - restarting stopped flows

The DRQC makes decisions for the network based on the actual and predicted

queue sizes of Kalman filters placed throughout the network. Queue sizes are received

by the DRQC, the DRQC makes network route decisions based on the queue sizes

received. This process is shown in Figure 2.12. The DRQC makes no changes to

the network until the network congestion is detected. Once the controller detects

congestion, the DRQC makes changes to routing tables and adjusts network flows to

relieve the congestion. Haught determined there is network congestion based on the

queue size, actual or predicted. Penttinen concluded that once the actual or predicted

25

queue was 50% full, the next time step result in a full queue or the queue would have a

long enough delay to cause network congestion or packet loss [26]. Link performance

equation:

link performance =
(packet size)((packet size)

(original capacity)

)
(number of packets in queue)

[26]. (2.5)

The equation was created by Penttinen for use in networks to determine overall link

performance.

DRQC implemented an approach named exponential backoff, currently integrated

into carrier sense multiple access with collision avoidance (CSMA/CA) and carrier

sense multiple access with collision detection (CSMA/CD) networks to retransmit

frames. DRQC implemented exponential backoff to solve the problem of a stagnant

queue size due to the links being at full capacity. Exponential back-off reduces the

current sending rate of the network flows by half allowing queue sizes to reduce to

zero for the next time iteration if there is no introduction of other network flows [15].

Figure 2.12. State Diagram of DRQC [15]

26

DRQC’s second approach of network congestion handling is execution of DRQC’s

rerouting process resulting in stopped, started or rerouting of network flows to elim-

inate network congestion. With the use of Kalman filters, the DRQC is aware of

actual and predicted queue sizes and where in the network the congestion occurs.

Using this information, the DRQC routes network flows in order of priority [15].

2.6 Summary

This chapter presents the fundamental research and concepts in the areas of

MANETs, network prediction tools, and network forecasting. Additionally, Chap-

ter 2 introduced the idea of Kalman filter use to predict router queue size in the

aid of network congestion prediction. The next Chapter discusses how an airborne

network is emulated using only static network components in order to gather the

information needed to optimize QoS in highly dynamic network environments. All

of the accomplishments in this area show the application of these techniques to sim-

ulated static networks. This research takes these accomplishments, applies them in

an emulated airborne network and provides QoS and throughput needed for military

airborne networks.

27

III. Methodology

3.1 Introduction

This chapter describes the methodology used to design and implement the Kalman

filter and associated network controller to improve network performance when com-

pared to traditional MANET routing protocols. This chapter outlines the goals and

hypothesis of this research, details the problem, describes the environment used, and

illustrates the procedures by which the results of procedures are evaluated. Section

3.5 describes the process to create an emulated dynamic airborne network. Section

3.6 is the validation and evaluation of Kalman filters. Once validated, the network

controller can use the Kalman filter predictions to enhance the airborne network QoS

and throughput. Section 3.7 describes the implementation of the network controller

and how the controller uses predicted queue size values from the Kalman filter to

react to ongoing network congestion.

3.2 Research Objectives

The objective of this research is to use Kalman filters to accurately predict router

queue size in networks where link speeds constantly change and use the predictions

to enable a network controller to reroute network traffic through routes with higher

bandwidth. The controller computes the optimum route based on network traffic

and network topology at the time of the request. Furthermore, the controller exe-

cutes the algorithm when the predicted router queue size reaches a predetermined

threshold. The network updates, route requests, updated routing information, and

regular network traffic use the same communication links to ensure realism of network

conditions.

28

3.3 Research Hypothesis

This research evaluates the following four hypotheses.

• Can dynamic airborne link speeds be emulated using static server hardware and

network nodes.

• Can Kalman filters accurately predict router queue size in highly dynamic air-

borne networks.

• Can the centralized network controller receive router updates from network

routers when Kalman filters predict network congestion. From routing updates,

the network controller is able to determine optimal routing information and

communicate this information to requesting routers.

• The number of dropped packets is lower with the application of the network

controller compared to MME and OSPF routing protocols.

3.4 Assumptions / Limitations

There are several assumptions to address and several limitations discovered dur-

ing the course of this research. The assumptions are as follows. The four primary

nodes that transmit data across links with variable link speeds are capable of deter-

mining link speeds to all secondary nodes. The four primary nodes are capable of

capturing current queue size at one second intervals. At all times, at least one con-

nection between the primary and secondary nodes is capable of transmitting all data,

i.e., multiple links are not required to ensure successful transmission. This research

assumes all platforms have a minimum transmission speed of 64 kilobits per second

(kbps) and a maximum transmission speed of 1 Megabits per second (Mbps). The

minimum connection speed in this research is based on the minimum speed allowable

29

by the hardware. All other speeds for this research are based off of the minimum to

test variable connection speeds and may not be link speeds seen using actual hard-

ware. All network traffic used for this research is UDP which is representative of the

streaming video which is usually transmitted by smaller airborne platforms. TCP

packets would attempt to retransmit during normal operation causing more packets

to be sent causing an inaccuracy in the test results. UDP allows for best effort de-

livery, i.e., if a UDP packets do not gets sent to the destination, the sender does not

attempt to retransmit the packet.

The limitations are as follows. The use of only one gateway is available at any

given time, reducing the capability of using a multi-commodity flow algorithm to route

data across several links at any given time. The MikroTik router, upon changing link

speeds to a given node, drops all queued packets prior to the link speed change instead

of transmitting to the destination. This limitation was discovered during initial phases

of testing with small number of packets being sent and is an inherent issue with the

MikroTik router OS. This is an issue during all tests so DNUC, MME and OSPF

are all affected. If all protocols are equally affected, the results of all three protocols

show this issue equally. Protocols available on MikroTik router OS and designed

algorithms are the only available protocols for this research. Only ten routers were

made available for use during this research, this limits the overall size of the network.

Link speeds available when route change request is issued drive routing decisions.

64 kbps is the lower limit of the MikroTik Router OS queue, therefore, link speeds

between two nodes never degrade beyond 64 kbps.

3.5 Airborne Network

Previous research in this area relied on network simulators to provide the backbone

on which to conduct individual research. To further this area of research, migration

30

from a simulation based network to a combination of actual hardware and virtual

workstations is required. This migration was necessary to prove concepts developed

in simulators, work as effectively in actual hardware. To emulate the airborne envi-

ronment, virtualization of all individual nodes takes place on a Windows-based server

running VMware Workstation 10. Virtual workstations included a combination of

Windows Enterprise 7 workstation for network device administration and Ubuntu

12.04 LTS (Precise Pangolin) to handle all data transmission. MikroTik router OS

accomplishes all Network routing. As previously discussed, a single server running

VMware Workstation hosts all network devices.

3.5.1 Network Topology.

Due to limitations of hardware used and since the purpose of this research is to test

concepts that rely on variable transmission speeds, data rates are for proof of concept

only and may not represent actual data rates. Betances completed similar research

using a simulator. He discovered that some military radios support a maximum rate of

10 Mbps while other support 8 Mbps [8]. He also discovered that as distance between

two devices increases, the amount of bandwidth decreases. For his simulations, he

used 8 down to 1 Mpbs [8]. For this research, the maximum transmission speed is

1 Mbps, decreasing every minute until the minimum rate of 64 kbps is achieved,

stepping down in increments of 128 kbps, 64 kbps and 32 kbps. The rates for this

research were chosen as to decrease the amount of traffic that had to be generated

to test the Kalman filter. For these reasons, Table 3.1 lists the transmission speeds

between each device upon startup of the device, but may not be the actual speeds

at the start of each test. Speeds shown in red imply the link speeds are decreasing

while speeds shown in green imply the link speeds are increasing, finally, link speeds

listed as a “-” have no direct connection between them. Link speeds between nodes

31

Table 3.1. Transmission Speed (kbps) Between Nodes

Nodes 1 2 3 4 5 6 7 8
1 ∞ - - - 64 512 384 -
2 - ∞ - - 192 256 768 -
3 - - ∞ - 1000 192 256 -
4 - - - ∞ 320 640 96 -
5 64 192 1000 320 ∞ 512 512 1000
6 512 256 192 640 512 ∞ 512 1000
7 384 768 256 96 512 512 ∞ 1000
8 - - - - 1000 1000 1000 ∞

five through eight have static link speeds. All other link speeds are continuously

varied in line with the following progression schedule (in kbps), 64 → 96 → 128 →

192 → 256 → 320 → 384 → 512 → 640 → 768 → 1000 → 768 → 640 → 512 →

384 → 320 → 256 → 192 → 128 → 96 → 64. The link speed progression allows for

constantly changing data rates but may not be what is seen in actual hardware.

Figure 3.13 shows the network setup for this research. Nodes 1-4 are primary

nodes and represent small airborne platforms that are unable to transmit network

traffic directly to a ground station. Each node has two computers attached, one

administrative and one data transmitting computer. The administrative computer

handles all Kalman filter predictions and if necessary, rerouting network traffic from

it’s corresponding node to the secondary nodes. The secondary nodes consist of nodes

5-7. These nodes act as larger airborne nodes that can receive network traffic from

smaller nodes and route it directly to a ground node. Node 8 is the ground station

in this scenario. The ground station receives all of the network traffic from the four

primary nodes. The ground station also acts as the network controller receiving up-

dates from the primary nodes, determining best possible network paths for all primary

nodes, and transmits routing information as the primary nodes request changes in

their corresponding network routes.

Configuration of all network link speeds is completed using the MikroTik Router

32

Figure 3.13. Network Design used to all Testing

OS. MikroTik has options available allowing the configuration of queues to specific

Internet Protocol (IP) addresses or interfaces of the router itself. Controlling the

queue to a specific interface allows for configuring link speeds to specific routers.

Controlling link speeds to different routers is the basis for simulating the variable link

speeds to different airborne platforms. Figure 3.14 shows the MikroTik configuration

of the variable link speeds. The target listed in the figure corresponds to a specific

interface on the router itself which directly connects to a secondary router which acts

as a different plane in the simulated airspace. All commands to control link speeds

can be found on the MikroTik manual web page [4]

The router directly controls each interface using the scheduler function within the

33

MikroTik router. The scheduler controls each interface and the interface’s link speed

independently allowing for variable link speeds on each interface. Upon configuration

of the queue as shown in Figure 3.14, the scheduler can be configured to change the

link speeds at an predetermined interval as shown in Figure 3.15.

Figure 3.13 shows configuration of the network used to perform the data collection.

The four nodes on the top represent smaller aircraft not able to transmit data directly

Figure 3.14. Sample MicroTik’s Queue Configuration

Figure 3.15. Sample MicroTik’s Scheduler

34

to a ground node. Therefore, these nodes transmit their data through larger aircraft

(represented as the three nodes in the center of the figure) which route the data to

the ground node (represented as the node on the bottom of the Figure 3.13). The

ground node is the destination node for the primary nodes data transmission. As

well as being the destination node for all data, the ground node acts as the Dynamic

Network Update Controller (DNUC) provides all necessary routing changes for the

primary nodes. The network link speeds are variable between the primary nodes and

the secondary nodes according to the schedule above. At any given time, each primary

node has one link that is able to support all network traffic from that node. Upon

activation of the scheduler, the link speeds change according to the predetermined

schedule.

3.5.2 Network Validation.

Success of this research depends on simulating highly dynamic link speeds of an

airborne network environment by using static network components. Validation of

the variable link speeds is necessary for validation of all experiments. Validation of

the dynamic link speeds is conducted using the ping tool. Sending one 500 kilobits

(kb) ping, every five seconds while the link speed are set at 1 Mbps, 500 kbps, 256

kbps, and 128 kbps. If the link speeds are configured and the MikroTik router OS

is working correctly, the Round Trip Times (RTT) are 0.5 seconds, one second, 2

seconds, and four seconds respectively.

3.6 Kalman Filter

The design of the network controller reacts on state predictions made by the

Kalman filter. The Kalman filter used for this research is the UKF which was tested

during the research of Alqahtani [7]. To validate the Kalman filter predictions, the

35

future state is compared to the observed state. In previous research, the research

was conducted using static networks, run in networks simulators such as Network

Simulator version 2 [15]. Limited research in airborne networks was a simulation of

the Caspian Sea Scenario described by Betances [8]. The goal of this research is a

more realistic airborne network consisting of actual network devices communicating

over an actual network. Ensuring the network is more realistic, airborne nodes, links,

and network traffic are emulated while the Kalman filter predicts the network state

in one second intervals. The predictions are sent to the network controller to make

network wide routing decisions.

Validation of the Kalman filter in an airborne network consists of placing a Kalman

filter in a network router and sending network traffic through the router. The amount

of traffic sent through the router is more than the destination link can support to

ensure the router the receive rate of the router is larger than the send rate, i.e., the

router queue size increases. As the network traffic is sent through the router, the

Kalman filter predicts queue size in the router. Each time the Kalman filter makes

a prediction, the prediction is stored along with the measured value and a näıve

prediction value. The näıve prediction is the previous measured value. Verification

of the Kalman filter consists of comparing the Kalman filter and näıve prediction

values against the current state of the queue at the predicted time. Several iterations

are captured with the smaller mean difference between the predicted value and the

measured value have a better prediction method.

3.7 Dynamic Network Update Controller

Similar to other network types, an airborne network requires a network controller

to monitor queue sizes, network congestion, and flow priority and respond by making

informed routing decisions for the routing and rerouting of information throughout

36

a network. When the controller detects network congestion at any point within the

network, the controller must adjust the routing throughout the network to reduce or

eliminate network congestion. This section describes the design of the DNUC which

controls network flow to optimize a network according to the updates the DNUC

receives from other network devices.

The main goal of the DNUC is to show that Kalman filter predictions can be

used to optimize network throughput in a dynamic environment where link speeds

are constantly changing. The network controller can utilize these Kalman filter pre-

dictions to make informed decisions about the network. The network controller can

optimize network flows to increase throughput. Even though an airborne environ-

ment is highly dynamic, a centralized device is necessary as to have awareness of the

overall state of the network to make the necessary routing decisions. The centralized

server could be a specific device or an elected leader that changes from time to time.

For the case of this research, the ground station is the centralized server since every

node communicates with the ground station already. Therefore, all network nodes

have communication with the ground station. The main benefit of a centralized sys-

tem is the ease of maintaining accuracy of network routing information and it allows

other network devices to access a single location for all necessary network topology

updates. Even though optimization has not taken place on the controller used for

this research, the controller demonstrates validity of Kalman filter predictions in an

airborne environment.

A key feature of the DNUC is the ability to receive timely updates from network

devices noticing congestion. The controller can use these updates to generate informed

network routing decisions. When a node predicts that the router queue reaches a

predetermined threshold, the node updates the controller and requests new routing

information from the controller. The controller then passes along the new route

37

information to the requesting node.

3.7.1 Features.

The DNUC needs to maintain certain requirements to maintain a level of network

flow. These requirements specify what the DNUC needs to do to optimize network

routes. Chapter IV highlights the tests performed and demonstrates the functionality

of the controller within the network described above. The four main features of the

controller and their descriptions are as listed below.

• Network Congestion Detection is the ability of the controller to look at

future queue size predictions made by the Kalman filter. Each node has an

individual Kalman filter that allows each device to make predictions indepen-

dently of another. The controller does not have direct access to the Kalman

filter predictions, it is the responsibility of each node to use the Kalman filter

predictions to decide when to update the controller and request route changes.

All Kalman filters for this research were written using Matlab.

• Network Update Collection is the ability of the controller to receive up-

dates from each node thus allowing the controller to make informed network

routing decisions. When a node notices network congestion, an update request

is sent to the DNUC. The controller requests the node to send the update. Once

received, the controller informs the network route generation portion. The up-

date function consists or two parts. First, the node itself informs the controller

of the impending update. Second is the controller itself which responds to up-

date requests and receive the updates. The update portion of the controller is

a Python socket program.

• Network Route Generation is the controller’s ability to parse the received

38

updates from network nodes and determine the best possible route based on the

latest update received from each node. The network generation looks through

all updates to get awareness of the entire network state and determines the

optimum route for each node. The network route generation portion is written

in Python.

• Network Route Distribution is the ability of the controller to pass new

routing information to all nodes when a node requests a new route. When the

Kalman filter on a node notices that the amount of queued packets predicted

is consistent with network congestion, the node requests a new route from the

controller. The controller then passes along the updated route information back

to the node. The network route distribution portion is a Python program.

All portions of the controller rely on the ability of the node to make queue size

predictions. Even though the controller is constantly running, the controller waits for

nodes to make routing updates and request new routing information. The Kalman

filter Matlab program calls the update and route request Python scripts.

3.7.2 Design.

The DNUC receives network condition updates from every node in the network.

The controller makes decisions based on these updates to optimize network traffic

flow. When a node updates the controller, the controller potentially produces new

routing information. An illustration of this process is shown in Figure 3.16. The

network nodes receive queue size updates, passes the update to the Kalman filter

that predicts the upcoming queue size. Prior to implementation, a decision about the

two queue size thresholds is made. The two thresholds correspond to the predicted

router queue size. When the predicted queue size exceeds threshold one, the nodes

updates the controller. When the queue size exceeds threshold two, the node requests

39

Figure 3.16. State Diagram of DNUC

updated routing information from the controller. For this research, threshold one is

100, threshold two is 200 and the maximum queue size is 500. These values allow

the Kalman filter to accurately determine network congestion without burdening the

network resources. For a specific node, if the predicted queue size remains below

threshold one, no network congestion is noted and no updates are sent to the con-

troller. With the nodes updating the controller only when congestion is noted, less

non-data traffic is transmitted throughout the network. Every Node in the network

relies on the Kalman filter process to make updates to the controller as well as receive

updates from the controller. The network nodes follow the flow chart in Figure 3.17

to handle network congestion.

During normal operations, when the link can support all network traffic, a small

number of packets may be in the network queue due to the transmission rates of the

source. In the dynamic nature of airborne networks, congestion of network links can

become an issue quickly. This issue means an accepted tolerance should be set low

enough to ensure that if a link is degrading quickly, the controller change the routes

quickly enough to allow normal data to continue to flow. For this research, network

traffic is transmitted at a constant rate and the only reason the router queue should

increase is when the link speed drops and can no longer support traffic load.

40

Figure 3.17. Flow Chart of Node Congestion Process

When the bandwidth of a link can no longer support network traffic, queued

packets are seen in the router. The network node flow chart takes over from this

point. When the node sends the update to the controller, the controller takes over

to determine the best possible route at that moment. The controller reroutes traffic

based on the following. The controller receives updates from network nodes. The

algorithm parses the file looking at the first line to determine the IP address of the

node sending the update. The file also contains the current gateway, all other network

connections and their corresponding link speeds. The controller determines which

route has the highest link speed and creates a file using the host’s IP address and as

the filename. The new file consists of one line and contains the new gateway and is

41

formatted for installation directly onto the router. A new file is created every time

a node makes an update to the controller unless a file exists for that specific node,

as which time the file is overwritten with the new routing information. When the

node requests updated route information, the controller determines which IP address

is requesting the information. Along with the request, the node sends its IP address

to the controller. The controller uses the IP address and sends the file with the same

name to the node. When the node receives the new routing information, it loads the

formatted file directly to the router, at which time, the router updates the routing

table and traffic begins to flow through the new gateway.

3.8 Experiment

Along with DNUC, two different protocols are tested during this research: MME,

and OSPF. MME was designed for use wireless networks where link states frequently

change whereas OSPF was designed for use in networks with static link states. The

MikroTik router came preinstalled with MME and OSPF. The number of dropped

packets is captured when running DNUC. The number of dropped packets is captured

while independently running MME and OSPF. For all three cases, no other dynamic

routing protocols are active during testing.

This research consists of performing six different tests on each of the three different

protocols with each test consisting of ten different runs. The six tests consist of two

different UDP packet sizes with both of these tests run using three different delay

schemes between packet transmissions: static delay time, Gaussian distribution of

delay times and exponential distribution of delay times. The first packet size test

consists of packets of average size of 992 bytes without the header. The two headers,

UDP and IP, add an additional 28 bytes of data. The IP header consists of 20 bytes

while the UDP header consists of 8 bytes. Including these headers, the total number

42

of bytes in each data packets is 1020 bytes. With an average number of packets

sent per second equal to 40, the 1020 bytes are an average data rate for the link

speed configuration. The second packet size test consists of packets of size 1112 bytes

without the header and 1140 bytes including the header. Again, 20 bytes for the IP

header and 8 bytes for the UDP header. With an average number of packets sent

per second equal to 50, the 1140 byte packets approach the limit of the network as

configured. The data contained in the packets include an IP address, an asterisk and

980 or 1100 x characters (x = ASCII 78) respectively. The packets were put together

in such a way so that a single packet could travel from the source to the destination

without fragmentation. The Maximum Transmission Unit (MTU) for the network is

set at 1500 bytes which means that fragmentation would occur on any packet larger

than 1500 bytes which is why all packets are less than 1500 bytes. The two packet

sizes are calculated to allow for two different delay times that are easily calculated

while ensuring the packet sizes are below the MTU.

As listed above, packets transmission occurs at two different average rates. Trans-

mission of the 1020 byte packets occurs at a rate of 40 packets per second resulting

in an overall throughput at 40packets
second

∗ 1020 bytes ∗ 8 bits
byte

= 326 kbps. Transmission

of the 1140 bytes packets occurs at a rate of 50 packets per second resulting in an

overall throughput of 50packets
second

∗ 1120 bytes ∗ 8 bits
byte

= 456 kbps. The two different

data rates test the ability of the different protocols to handle different traffic loads.

The first test of 326 kbps tests the protocols at a average (≈ 60% of the maximum

throughput) amount of data. The test that delivers 456 kbps tests the protocols at a

high data rate which is ≈ 90% of the total system throughput. As explained earlier,

at any given time, each primary node can send 512 kbps to a secondary node. This

means that the maximum throughput of any primary node to the ground station is

512 kbps. Therefore, the second set of tests, at 456 kbps, almost tests the maximum

43

threshold of the system.

Three tests for each protocol are ran using the two different average rates with the

three tests using different methods of sending data. Even though the transmission

methods are different, the average transmission rate remains the same, 40 packets per

second for 1020 byte packets and 50 packets per second for the 1120 byte packets. The

first test has fixed delay times. For the 1020 byte packets, a packet is sent followed

by a delay of 25 ms achieving a rate of 40 packets per second. For the 1140 byte

packets, a packet is sent followed by a delay of 20 ms achieving a rate of 50 packets

per second.

The second delay method, instead of the fixed delay, this test uses a random

number generator following a Gaussian distribution. The 1020 size packet, the average

of the Gaussian distribution is set at 0.025 making the average delay time 25 ms thus

achieving the same number of packets per second on average. Figure 3.18 shows a

Gaussian distribution with an average of 0.025 which is representative of what is

seen when performing this test. The 1140 byte packets are similar. It uses the same

random number generator except the average is set to 0.020. Figure 3.19 shows the

same distribution of numbers except with an average of 0.020. If the random number

generator chooses a negative number, the amount of delay is zero.

The third delay method uses a random number generator following an exponential

distribution. For this method, the average delay between packets is again set to 25

ms and 20 ms for the 1020 byte packets and 1140 byte packets respectively. Figure

3.20 shows a random number generator following an exponential distribution with an

average of 0.025. Figure 3.21 show what is expected from a random number generator

following an exponential distribution with an average of 0.02. Again, if the random

number generator chooses a negative number, the amount of delay is zero.

The three different delay methods described above are three different ways of

44

Figure 3.18. Histogram of Gaussian Distribution Wait Times for Gaussian 1

Figure 3.19. Histogram of Gaussian Distribution Wait Times for Gaussian 2

45

Figure 3.20. Histogram of Exponential Distribution Wait Times for Exponential 1

Figure 3.21. Histogram of Exponential Distribution Wait Times for Exponential 2

46

transmitting data. The static delay times are for comparison where the Gaussian

and exponential distributions are more realistic of what is actually seen in networks.

The Gaussian distribution delay times mimics real network traffic. When applications

send network traffic, the amount of delay time between packet isn’t an explicit amount

of time. Some packets may take longer to package than others so the delay between

packets is not constant. The exponential distribution of delay times is representative

of bursty traffic. When bursts of traffic are sent, a large number of packets with small

delays between packets, sent followed by a longer delay until more traffic is ready. All

three methods deliver different results and provide more information for comparison.

To determine the number of packets lost during the tests, a python script is

running on all nodes while a separate python script is running on the ground station.

The node script tracks the number of times a packet is sent and annotates this number

on a locally stored file. The source writes it’s IP address inside the sent packets. When

the packet arrives at the destination, the destination reads the data and IP address

embedded in the packet to file stored on the destination. When all packets have been

sent, the four primary node files and the ground station files are input into another

script where a comparison is made between the number of times the primary node

sent a packet and the number of times the ground station received a packet from each

respective primary node. The total number of lost packets is the difference between

the number of generated packets and the number of received packets.

Previous research has concentrated on the Kalman filter predictions [15]. This

research concentrates on the network throughput for each setup. As described in

Chapter 3, tests performed calculate the number of dropped packets for the duration

of each test. Analysis of dropped packets concentrates on determining the average of

dropped packets during each run. Tables and graphs showing the number of dropped

packets are the main way of displaying the results for each test. The graphs display

47

the number of dropped packets as well as a regression line for the data. Analysis

of the data gathered from the three different protocols includes a comparison of the

p-values from two-tailed t-tests.

The analysis of the data includes the calculation of the mean and standard devia-

tion for each test. A graph of the 95% confidence interval to ensure that one protocol

achieves better or worse results than another 95% of the time. Matlab completed all

calculations and create all graphs.

3.9 Summary

In conclusion, the main concept of this chapter is to define how the airborne

network is modeled and how various routing algorithms perform. The Kalman filter

rating is a comparison of the predicted state and the observed state. The main

concept of the DNUC is that how the controller receives updates from network nodes

and determines the best possible route for traffic to travel from source to destination.

The network nodes monitor the current and predicted queue sizes until the nodes

discover network congestion. When the nodes notice congestion in the network and

the queue size exceeds the first threshold, the node updates the DNUC. Once the

queue size exceeds the second threshold, the node requests a new route. The DNUC is

a centralized controller to track and update routing information. DNUC understands

how to optimize the network to clear network congestion. Only when the DNUC

receives information from network nodes can the controller make updated decisions.

All decisions made by the network nodes and the controller itself are greedy and based

on the current network state.

48

IV. Results and Analysis

4.1 Introduction

This chapter presents the results the tests performed on DNUC, MME and OSPF.

This chapter consists of five different sections. The following list describes the contents

of each section and describes the purpose of each test.

• Section 4.2 discusses the results of the experiment that demonstrates the func-

tionality of the MikroTik router for use in limiting network link speed from the

node to node within the network.

• Section 4.3 discusses the results demonstrating the performance of the UKF.

These simulations establish a performance basis for the Kalman filters.

• Section 4.4 discusses the results using static delay times between packets. Each

test compares the results from three different methods tested: DNUC, MME,

and OSPF.

• Section 4.5 discusses the results using a Gaussian distribution for delay times

between packets. Each test compares the results from the three different meth-

ods tested: DNUC, MME, and OSPF.

• Section 4.6 discusses the results using an exponential distribution for delay

times between packets. Each test compares the results from the three different

protocols tested: DNUC, MME, and OSPF.

4.2 Network Link Speed Validation

This research requires the use of variable network link speeds to prove Kalman

filters work in dynamic networks. Without the actual hardware needed to test the

49

Kalman filter in networks with variable link speeds, this type of network requires

emulation while using static networking devices. Variable link speeds can be simulated

using the MikroTik router OS. Once configuration of the link speeds is complete and

the MikroTik scheduler is configured, the link speeds change every minute. Validation

of the link speeds needs to occur to ensure the network emulates an airborne network

where link speeds are constantly changing.

Validation of the link speeds requires demonstration that the link speeds are con-

stantly changing. Validation accomplishment takes place by using the ping command

and ensuring the measured link speed is within 1% of the configured link speed. When

the ping command sends a packet from a source to a destination, the RTT is mea-

sured and displayed. For validation of the link speeds and ease of calculation, a ping

packet of size 524,064 bits is sent across a MikroTik router where configuration of

different link speeds is complete. RTT Measurement of several different link speeds

is shown in Table 4.2. The table lists the configured link speed, the RTT of the

packet took to reach the destination and return to the source. Finally, calculation

of the measured link speed was done by dividing the packet size by the RTT. For

example 524,064
4012ms

≈ 130, 064bps. As the results show, the configured link speeds are

approximately equal to the measured link speeds. Since all measured link speeds are

within 1% of configured link speeds, an acceptable range of tolerance is achieved and

within an acceptable tolerance to show validity of this research.

Table 4.2. Network Link Speed Validation

Conf. Link Speed RTT Meas. Link Speed % Difference
128 kbps ≈ 131,072 bps 4,012 ms 130,064 bps ≈ 127.02kbps 99.2%
256 kbps ≈ 262,144 bps 2,005 ms 261,379 bps ≈ 255.25kbps 99.7%
512 kbps ≈ 524,288 bps 1,002 ms 523,018 bps ≈ 510.76kbps 99.8%
768 kbps ≈ 786,432 bps 667 ms 785,703 bps ≈ 767.29kbps 99.9%
1 Mbps ≈ 1,048,576 bps 502 ms 1,043,563 bps ≈ 0.995Mbps 99.5%

50

4.3 Kalman Filter Validation

The router queue size predictions from the UKF in each node controls the DNUC.

Alqahtani’s research further developed the idea of a controller that used UKF pre-

dictions [7]. In order to expand the previous research mentioned in Chapter II, all

primary nodes contain UKFs. These nodes require Kalman filters due to the dy-

namic nature of the link between the primary and secondary nodes. When more data

is transmitted across links that are unable to transmit the network traffic, the packets

are placed in the queue of the router and router queue size increase. All outbound

interfaces of the primary nodes have queues. The MikroTik router OS has predefined

queues used during this research. Independent of packet size, the maximum capacity

of the queues for this research is set to 500 packets. Each Kalman filter predicts one

second into the future and makes a prediction every second. During the experiments,

queue size values (actual queue size, UKF predicted value and näıve predicted value)

were written to a locally stored file and used to verify the operation of the UKF.

The näıve predictions are the previous value of the actual queue size. Comparisons

were made between the UKF prediction, the näıve prediction and the actual queue

size for the same time. These comparisons are used to compare the UKF predictions

and näıve predictions and determine if the UKF is viable for use during this research.

All Kalman filters were designed and configured the same, so testing one filter ensure

that all filters are predicting as expected.

Table 4.3 displays the results of test 1 of the UKF. The results display the actual

router queue size for each second, the UKF predicted and the näıve predicted queue

size for the same second. The fourth column lists the difference between the actual

router queue size and UKF predicted queue size along with the mean and standard

deviation for the values. The fifth column displays the difference between the actual

queue size and the näıve predicted queue size along with the mean and standard

51

Table 4.3. Queue Size - Actual vs Kalman Filter and Näıve Predictions

Actual Kalman Näıve Actual - Kalman Actual - Näıve
50 48 42 2 8
57 53 50 4 7
65 62 57 3 8
67 64 65 3 2
67 67 67 0 0
75 71 67 4 8
82 80 75 2 7
89 86 82 3 7
91 89 89 2 2
99 96 91 3 8
108 104 99 4 9
134 125 108 9 26
134 131 134 3 0
142 139 134 3 8
144 142 142 2 2
151 149 144 2 7

Mean 3.0625 6.8125
Std Dev 1.8786 6.0135

deviation for these values. The table shows that UKF predictions are typically more

accurate than näıve predictions. The graph shows a couple instances where the näıve

prediction is more accurate than the UKF.

Table 4.4 displays the results of test 2 of the UKF. The results display the actual

router queue size for each second, the UKF predicted and the näıve predicted queue

size for the same second. The fourth column lists the difference between the actual

router queue size and UKF predicted queue size along with the mean and standard

deviation for the values. The fifth column displays the difference between the actual

queue size and the näıve predicted queue size along with the mean and standard

deviation for these values. The table shows that UKF predictions are typically more

accurate than näıve predictions. The graph shows a couple instances where the näıve

prediction is more accurate than the UKF.

52

Table 4.4. Queue Size - Actual vs Kalman Filter and Näıve Predictions

Actual Kalman Näıve Actual - Kalman Actual - Näıve
53 48 45 5 8
59 55 53 4 6
66 62 59 4 7
76 72 66 4 10
83 78 76 5 7
83 82 83 1 0
90 88 83 2 7
100 95 90 5 10
107 105 100 2 7
155 141 107 14 48
163 157 155 6 8
172 166 163 6 9
183 177 172 6 11
187 181 183 6 4
194 189 187 5 7
203 199 194 4 9
212 207 203 5 9

Mean 4.9412 9.8235
Std Dev 2.7720 10.1627

According to Table 4.3 and Table 4.4, the mean for both tests show the UKF is

predicting more accurate than the näıve filter. On test 1, when the actual amount

of queue size is 134 and on test 2 when the actual amount of queue size is 155, the

difference between actual and näıve is much higher during both instances. This is a

result of the MikroTik router not creating the file used to read the number of packets

in the queue for two seconds. This resulted in the same queue size value being read

during two different seconds. If the file would have been written during both seconds,

the queue size would have changed more gradual and therefore the difference between

the actual and the näıve. The average of the UKF means is 4.00185 while the mean for

the näıve filter is 8.318. These averages show that the UKF predictions are typically

more accurate than the näıve predictions and therefore the controller makes routing

decisions sooner.

53

4.4 Static Wait Time Tests

The first set of tests run use static delay times between packets. As stated in

Chapter 3, each protocol, DNUC, MME and OSPF complete two Iterations. Iteration

1 has an average data rate while Iteration 2 has a high data rate. The data rates are

considered average and high when compared to available throughput of the network

used for these tests. Results are captured during each test and evaluated to compare

the efficiency of the three different protocols.

4.4.1 Static Iteration 1 Results.

Static Iteration 1 consists of sending a 1020 byte packet followed by a delay of 25

ms. This makes the average number of packets sent every second equal to 40. The

average data rate from a single node equal to 326 kbps. The network consists of four

nodes that are sending data with each node have a data rate of 326 kbps. This makes

the total throughput of the network equal to 1304 kbps. For static Iteration 1, the

total number of packets sent from each node is 66,800 making the total number of

packets sent equal to 267,200. Ten runs are performed on each protocol to ensure

confidence in the results.

Table 4.5 displays the number of lost packets for each protocol for each of the

ten runs of static Iteration 1. The table lists the number of dropped packets dur-

ing each individual run along with the mean, standard deviation and percentage of

dropped packets. Two-tailed t-tests are performed on all three results to determine

the probability of null hypothesis, H, that the compared values have a statistical sig-

nificance. The p-value when DNUC is compared to MME is 4.262e-15. The p-value

when DNUC is compared to OSPF is 2.3464e-13. Finally, the p-value when MME

is compared to OSPF is 6.6504e-08. Since all p-values are well below 5%, the null

hypothesis is rejected for each comparison determining that there is no statistical

54

Table 4.5. Total Dropped Packets of Static Iteration 1

Run DNUC MME OSPF
1 3,053 17,736 32,946
2 3,093 22,668 35,990
3 2,951 24,614 43,420
4 3,280 17,656 43,112
5 3,185 21,031 30,519
6 3,258 23,681 44,417
7 3,028 23,940 49,427
8 2,928 22,265 43,527
9 4,147 21,715 34,387
10 3,166 20,722 38,630

Mean 3,208.9 21,602.8 39,637.5
Std Dev 350.52 2,405.24 6,500.26

Dropped Packet Percentage 1.20% 8.08% 14.83%

significance between all data sets. The p-values corresponding to DNUC are much

lower than the p-value comparing MME and OSPF.

Table 4.5 shows, DNUC dropped 85.15% less packets than MME and 91.90% less

packets than OSPF. MME dropped 45.50% less packets than OSPF. Unlike MME and

OSPF, DNUC uses the router queue size to determine network congestion, i.e., when

link speeds are changing, and is able to react to the network congestion. Network

congestion means that the link is unable to support the amount of network traffic

being transmitted. As stated in Chapter 2, MME relies upon the sequence numbers

of the packets. Without sequence numbers in the UDP packets, the amount of time

MME takes to determine network congestion is much larger than that of DNUC.

OSPF is constantly sending out updates to other routers in the network. This causes

unnecessary network traffic to be transmitted across network links where bandwidth

is already limited. OSPF is typically not found in dynamic networks and therefore

in this type of network, OSPF is unable to change routes as frequently as MME or

DNUC and performs inadequately when compared against these two protocols.

55

Figure 4.22. Scatter Plot of Static Iteration 1 Results

Figure 4.22 displays the number of dropped packets in a scatter plot along with

a regression line to more easily compare the results and determine the future trend

of packet loss. The regression lines show that all three protocols tend to have higher

packet loss as time continues. Even though all trends are positive, OSPF and MME

lose more packets much sooner than DNUC. Figure 4.22 supports the variability of

the packets loss and standard deviation results shown in Table 4.5. The variability of

packet loss of DNUC means that it consistently has low packet loss variability where

the amount of packet loss demonstrated by OSPF is erratic.

4.4.2 Static Iteration 2 Results.

Static Iteration 2 consists of packets with a size of 1120 bytes and a delay time of

20 ms between each packet. This makes the average number of packets sent per second

equal to 50. The average rate of data sent from a single node equals 448 kbps. Again,

56

there are four nodes with a data rate of 448 kbps, this make the total throughput for

the network equal to 1792 kbps. For static Iteration 2, the total number of packets

sent from each node was 83,500 making the total number of packets sent across the

network was 334,000. Again, ten runs where completed on each protocol to ensure

confidence in the results.

Table 4.6 displays the number of lost packets for each protocol for each of the ten

runs of static Iteration 1. The table lists the number of dropped packets during each

individual run along with the mean, standard deviation and percentage of dropped

packets. Two-tailed t-tests are performed on all three results to determine the prob-

ability of null hypothesis, H, that the compared values have a statistical significance.

The p-value when DNUC is compared to MME is 1.8311e-18. The p-value when

DNUC is compared to OSPF is 4.7468e-14. Finally, the p-value when MME is com-

pared to OSPF is 3.0325e-05. Again, all p-values are well below 5% and therefore the

null hypothesis is rejected for each comparison determining that there is no statistical

significance between all data sets. The p-values corresponding to DNUC are much

Table 4.6. Total Dropped Packets of Static Iteration 2

Run DNUC MME OSPF
1 2,450 58,083 55,146
2 2,270 52,757 95,291
3 2,342 49,384 75,608
4 2,318 55,279 76,534
5 2,744 50,471 71,283
6 2,622 60,556 71,613
7 2,325 51,008 66,831
8 2,473 51,513 83,209
9 2,395 60,330 76,128
10 2,713 60,052 87,548

Mean 2,465.2 54,943.3 75,919.1
Std Dev 171.12 4,466.28 11,147.1

Dropped Packet Percentage 0.74% 16.45% 22.73%

57

lower than the p-value comparing MME and OSPF.

The results again demonstrate that DNUC is more efficient changing network

routes compared to MME and OSPF. When compared to the two existing protocols,

DNUC dropped 95.51% less packets compared to MME and dropped 96.75% less

packets compared to OSPF. MME dropped 27.63% less packets than OSPF. Again,

these results are consistent with results of static Iteration 1. Static Iteration 2 sends

66,800 more packets, an increase of 25%, over static Iteration 1. With the increased

number of packets and larger packet size, one would expect a larger number of dropped

packets. MME drops an additional 33,340.5 packets average on static Iteration 2

when compared to static Iteration 1 while OSPF drops an additional 36,281.6 packets

average on static Iteration 2 compared to static Iteration 1. DNUC on the other

hand, drops 743.7 less packets average on static Iteration 2 when compared to static

Iteration 1. The increased size and number of packets sent during static Iteration 2

had a different effect on the router queue size. The increased amount of traffic during

static Iteration 2 allowed the queue to reach the saturation level more quickly and

therefore, Kalman filter was able to determine the link degradation quicker during

static Iteration 2. Therefore, DNUC was able to change the route more quickly. As

stated in Chapter 3, the MikroTik router drops the packets currently queued when

the link speed changes. If the Kalman filter can determine network congestion more

quickly, the DNUC is able to change routes quicker than MME and OSPF. This allows

more time for the link to transmit more of the queued packets before the link speed

changes.

Figure 4.23 displays the number of dropped packets in a scatter plot along with a

regression line to compare the results and determine the future trend of packet loss.

The regression lines show that all three protocols tend to have higher packet loss

as time continues. Even though the trends are all positive, OSPF and MME loses

58

Figure 4.23. Scatter Plot of Static Iteration 2 Results

more packets quicker than DNUC. If the tests continued, MME and OSPF would

tend to increase at a higher rate than DNUC. The variability of the packets loss is

easily seen in Figure 4.23. The variability of packet loss of DNUC means that DNUC

consistently has low packet loss where the amount of packet loss demonstrated by

MME is highly dynamic and always higher. Even though the variability of MME

is higher than that demonstrated by DNUC, the variability of MME is significantly

lower than that of OSPF. Along with variability, overall packet loss is less with MME

than that of OSPF.

Figure 4.24 shows the 95% confidence interval plot for both tests when using

static interval times between packet transmission. The three data sets are color coded

according to the legend. The blue line in each bar graph shows the 95% confidence

interval of the mean for the two data sets while using static delay times. The longer

the confidence interval is, the larger the standard deviation is for the data. The figure

59

Figure 4.24. Confidence Interval of Static Delay Time Results

demonstrates that the confidence intervals between the three data sets do not overlap

showing that on average DNUC outperforms MME and OSPF, and MME outperforms

OSPF. The 95% confidence interval is in line with the standard deviations of the

corresponding results which also demonstrate the variability of DNUC is much lower

than that of MME and OSPF, and MME is lower than OSPF. Figure 4.24 validates

the data listed above for static Iteration 1 and static Iteration 2.

Visual inspection of the tables and graphs for static wait times demonstrates that

DNUC outperforms MME and OSPF. Between MME and OSPF, MME outperforms

OSPF. Since MME works best in wireless ad-hoc networks while the MikroTik’s

version of OSPF works best in static networks, the results are accurate where MME

outperforms OSPF in this network.

60

4.5 Gaussian Distribution Wait Time Tests

The second set of tests follow a Gaussian distribution for the delay times between

packets. As with static delay time, each protocol, DNUC, MME and OSPF, are

completing two Iterations of tests. Configuration of all elements of the tests aside

from the delay times are the same as in Iteration one while using static delay times.

Iteration 1 has an average data rate while Iteration 2 has a high data rate. The data

rates are considered average and high when compared to available throughput of the

network used for these tests. Results are captured during each test and evaluated to

compare the efficiency of the three different protocols.

4.5.1 Gaussian Iteration 1 Results.

Iteration 1 consists of sending a 1020 byte packet followed by a delay of a random

amount of time. The amount of delay time is determined using a Gaussian distribution

(see Figure 3.18) with an average of 25 ms. This makes the average number of packets

sent every second equal to 40. The average data rate from a single node is 326 kbps.

The network consists of four nodes that are sending data with each node have an

average data rate of 326 kbps. This makes the total throughput of the network

averaged to 1304 kbps. For Gaussian Iteration 1, the total number of packets sent

from each node is 66,800 making the total number of packets sent equal to 267,200.

Ten runs are performed on each protocol to ensure confidence in the results.

Table 4.7 displays the number of dropped packets for each protocol for each of

the ten runs of Gaussian Iteration 1. The table lists the number of dropped packets

during each individual run along with the mean and standard deviation and per-

centage of dropped packets. Two-tailed t-tests are performed on all three results to

determine the probability of null hypothesis, H, that the compared values have a

statistical significance. The p-value when DNUC is compared to MME is 7.5175e-14.

61

Table 4.7. Total Dropped Packets of Gaussian Iteration 1

Run DNUC MME OSPF
1 252 17,327 40,528
2 229 20,956 43,758
3 232 20,865 44,695
4 257 21,813 46,793
5 208 26,577 48,987
6 245 26,834 48,534
7 229 26,930 49,636
8 144 27,815 47,114
9 220 26,066 47,571
10 294 28,210 45,481

Mean 231 24,339.3 46,309.7
Std Dev 38.74 3,757.35 2,766.55

Dropped Packet Percentage 0.09% 9.11% 17.33%

The p-value when DNUC is compared to OSPF is 3.5840e-21. Finally, the p-value

when MME is compared to OSPF is 1.4579e-11. Since all p-values are well below

5%, the null hypothesis is rejected for each comparison determining that there is

no statistical significance between all data sets. Similar to static Iteration 1, the

p-values corresponding to DNUC are much lower than the p-value comparing MME

and OSPF.

As shown in Table 4.7, DNUC dropped 99.05% less packets than MME and

dropped 99.50% less packets than OSPF. Finally, MME dropped 47.44% less pack-

ets than OSPF. The results again show that DNUC is performing much better than

MME and OSPF and MME is performing better than OSPF. These results match

up with that of static Iteration 1. One noticeable difference is the standard devi-

ation of MME and OSPF. Unlike the static wait times, the standard deviation for

MME is larger than OSPF. Even with an elevated standard deviation for MME, the

standard deviation for OSPF is rather small. The small standard deviations mean

that the number of dropped packets for MME is more widely scattered than those

62

experienced by OSPF. DNUC experienced less packet loss for this test than any other

test performed by several magnitudes over. As explained earlier, when the link speed

changes, all packets in the queue are dropped. Using the Gaussian distribution for

the delay times during Gaussian Iteration 1 allowed the queue to saturate quicker and

therefore, the gateway changed faster allowing transmission for almost all packets in

the queue of the previous gateway prior to the link speed changing.

Figure 4.25 show a scatter plot and regression line of the number of dropped pack-

ets for each protocol for Gaussian Iteration 1. As shown in the figure, the regression

lines for MME and OSPF are again increasing quickly while DNUC is steady. For

DNUC, the amount the regression line is increasing is negligible when compared to

MME and OSPF.

Figure 4.25. Scatter Plot of Gaussian Iteration 1 Results

63

4.5.2 Gaussian Iteration 2 Results.

Gaussian Iteration 2 consists of sending a 1120 byte packet followed by a delay of

a random amount of time. The amount of delay time is determined using a Gaussian

distribution (see Figure 3.19) with an average of 20 ms. This makes the overall

average number of packets sent per second equal to 50. The average data rate from

a single node is 448 kbps . The network consists of four nodes that are sending data

with each node have an average data rate of 448 kbps. Making the total throughput

of the network averaged to 1792 kbps. For Iteration two, the total number of packets

sent from each node was 83,500 making the total number of packets sent across the

network was 334,000. Again, ten runs are performed on each protocol to ensure

confidence in the results.

Table 4.8 displays the number of dropped packets for each protocol for each of the

ten runs of Gaussian Iteration 2. The table lists the number of dropped packets dur-

ing each individual run along with the mean, standard deviation, and the percentage

of dropped packets. Two-tailed t-tests are performed on all three results to determine

Table 4.8. Total Dropped Packets of Gaussian Iteration 2

Run DNUC MME OSPF
1 3,460 66,624 78,774
2 3,853 60,401 71,854
3 4,314 58,221 68,642
4 4,065 59,307 60,455
5 5,030 57,481 58,165
6 3,705 62,887 78,470
7 3,833 46,983 85,451
8 3,768 54,739 79,038
9 4,301 83,635 95,787
10 3,358 75,789 72,944

Mean 3,968.7 62,606.7 74,958.0
Std Dev 487.47 10,538.0 11,222.1

Dropped Packet Percentage 1.19% 18.74% 22.44%

64

the probability of null hypothesis, H, that the compared values have a statistical sig-

nificance. The p-value when DNUC is compared to MME is 8.8349e-13. The p-value

when DNUC is compared to OSPF is 9.7556e-14. Finally, the p-value when MME is

compared to OSPF is 0.0206. Similar to Gaussian Iteration 1, all p-values are well

below 5%, therefore the null hypothesis is rejected for each comparison determining

that there is no statistical significance between all data sets. The p-values corre-

sponding to DNUC are much lower than the p-value comparing MME and OSPF

when comparing MME and OSPF, the p-value is much more when compared to other

Iterations.

As shown in Table 4.8, DNUC dropped 93.66% less packets than MME and 94.71%

less packets than OSPF. Finally, MME dropped 16.48% less packets than OSPF. The

results again show that DNUC performs much better than MME and OSPF and

MME is performing better than OSPF even though the amount of packet loss MME

had compared to OSPF is much closer than previous tests. These results match the

results seen of static Iteration 2. Gaussian Iteration 2 sends 66,800 more packets

which is an increase of 25% over Gaussian Iteration one. With the increased number

of packets sent and the larger packet size, a larger number of dropped packets would

be expected during Gaussian Iteration 2. Along with static Iteration two, the number

of dropped packets for MME and OSPF are higher than Gaussian Iteration 1. The

cause of this is the transmission of more packets every second and the size of the

packets. One difference between static and a Gaussian distribution for the delay time,

the amount of dropped packets for DNUC increase by a factor of 17 times. With a

Gaussian distribution and the transmission amount of traffic during Iteration 2 led

to more packets being left in the queue when the link speed changed. An interesting

discovery during Gaussian Iteration 2 is the amount of standard deviation noted

by MME and OSPF. The increase of standard deviation means that the difference

65

between the number of packets dropped during each Iteration is higher than noticed

using static delay times.

Figure 4.26 shows a scatter plot and regression line of the number of dropped pack-

ets for each protocol for Gaussian Iteration 2. As shown in the figure, the regression

lines for MME and OSPF are increasing. For DNUC, the slope of the regression line

on the graph is difficult to tell but if the regression line is increasing, the increase is

negligible when compared to MME and OSPF. One interesting factor about Gaussian

Iteration 2 was that in a few run, OSPF outperformed MME. The explanation can be

the amount of variability with MME and OSPF. MME ranged from approximately

46,000 dropped packets to 82,000 dropped packets and OSPF ranged from approx-

imately 58,000 dropped packets to 98,000 dropped packets. Gaussian Iteration 2 is

the first test with that amount of disparity between the lower and upper bounds of

dropped packets. Even though these two protocols have highly dynamic variability,

Figure 4.26. Scatter Plot of Gaussian Iteration 2 Results

66

DNUC is steady with very little variability.

Figure 4.27 shows the 95% confidence interval plot for both tests when using a

Gaussian distribution for delay times between packet transmissions. The three data

sets are color coded according to the legend. The blue line in each bar graph shows

the 95% confidence interval for the corresponding data set. The figure demonstrates

that the confidence intervals between DNUC, and MME and OSPF do not overlap

while MME and OSPF partially overlap. The confidence interval graph also shows

the high variability seen with MME and OSPF on Gaussian Iteration 2. For MME

and OSPF, the 95% confidence interval is much larger on Gaussian Iteration 2 than

Gaussian Iteration 1. This confirms the results seen above. The difference between

Gaussian Iteration 1 and Gaussian Iteration 2 shows that DNUC performs a little

Figure 4.27. Confidence Interval of Gaussian Distribution Delay Time Results

67

better during Gaussian Iteration 1 compared to Gaussian Iteration 2 while MME and

OSPF perform much worse during test two.

As in the static delay time tests, visual inspection of the tables and graphs demon-

strate that DNUC outperforms MME and OSPF. Between MME and OSPF, MME

outperforms OSPF a majority of the time. Since the design of MME makes use of

wireless ad-hoc networks and the MikroTik version of OSPF was designed for use in

static networks, the results make sense that MME outperforms OSPF in this type of

network.

4.6 Exponential Distribution Wait Time Tests

The third set of tests completed follow an exponential distribution for the de-

lay times. As with the static and Gaussian distribution delay times, each protocol,

DNUC, MME and OSPF, are completing two iterations of tests. This test evalu-

ates the capability of the three protocols to handle bursty traffic. Results include

the number of dropped packets for the duration of each test. The same three proto-

cols are tested, DNUC, MME, and OSPF. Results are captured during each test and

evaluated to compare the efficiency of the three different protocols.

4.6.1 Exponential Iteration 1 Results.

Exponential iteration 1 consists of sending a 1020 byte packet followed by a delay of

a random amount of time. The amount of delay time is determined using a exponential

distribution (see Figure 3.20) with an average of 25 ms. This makes the average

number of packets sent every second equal to 40. The average data rate from a single

node is 326 kbps. The network consists of four nodes that are sending data with

each node have an average data rate of 326 kbps. This makes the total throughput

of the network averaged to 1304 kbps. For exponential iteration 1, the total number

68

Table 4.9. Total Dropped Packets of Exponential Iteration 1

Run DNUC MME OSPF
1 757 23,619 31,611
2 1,396 22,206 45,138
3 1,124 27,155 47,556
4 995 24,426 38,432
5 1,132 28,663 46,595
6 1,220 24,631 40,243
7 588 23,911 39,057
8 2,624 26,396 35,918
9 633 26,685 42,737
10 509 26,211 44,760

Mean 1,097.8 25,390.3 41,204.7
Std Dev 613.22 1,948.16 5,088.84

Dropped Packet Percentage 0.41% 9.5% 15.42%

of packets sent from each node is 66,800 making the total number of packets sent

equal to 267,200. Ten runs are performed on each protocol to ensure confidence in

the results.

Table 4.9 shows the number of packets lost during each run of iteration 1. The

table lists the number of dropped packets during each individual run along with the

mean, standard deviation, and the percentage of dropped packets. Two-tailed t-tests

are performed on all three results to determine the probability of null hypothesis, H,

that the compared values have a statistical significance. The p-value when DNUC is

compared to MME is 1.4547e-18. The p-value when DNUC is compared to OSPF is

2.3751e-15. Finally, the p-value when MME is compared to OSPF is 3.2886-08. Since

all p-values are well below 5%, the null hypothesis is rejected for each comparison

determining that there is no statistical significance between all data sets. Similar to

static iteration 1 and Gaussian iteration 1, the p-values corresponding to DNUC are

much lower than the p-value comparing MME and OSPF.

As shown in the Table 4.9, DNUC dropped 95.68% less packets on average than

69

MME and 97.34% less packets on average than OSPF. MME dropped 61.62% less

packets on average than OSPF. The mean for all three protocols is similar to what

was seen in the results of the static and Gaussian distribution delay times tests. The

results again show that DNUC is performing much better than MME and OSPF and

MME is performing better than OSPF. These results match that of static iteration

1 and Gaussian iteration 1. The standard deviation in exponential iteration 1 shows

that MME is more stable than OSPF. These results coincide with the static iteration

1 with one difference, MME had a standard deviation that was smaller than the other

two tests. The percentage of dropped packets for exponential iteration 1 was lower

than either of the previous two delay method tests. Since a majority of the delay

times are smaller than the average, packets, on average, have a faster transmission

rate than the previous two delay methods. The transmission rate means that when

the link speed approaches the point when saturation, the number of packets being

sent on average is large and the queue becomes congested quickly until a larger value

is chosen for the delay and the queue size drops for that period.

Figure 4.28 show a scatter plot and regression line of the number of dropped

packets for each protocol for exponential iteration 1. The regression line for MME

and OSPF have a positive slope whereas DNUC is steady over the course of the ten

tests. These results show similar trends as static iteration 2 and Gaussian iteration

2. Again, the variability of packet loss is seen in Figure 4.28 with the highest level

of variability being OSPF where results range from 31,000 packets dropped to 48,000

dropped packets. These results are different than those seen from Gaussian iteration

1.

70

Figure 4.28. Scatter Plot of Exponential Iteration 1 Results

4.6.2 Exponential Iteration 2 Results.

Exponential iteration 2 consists of sending a 1120 byte packet followed by a delay

of a random amount of time. The amount of delay time is determined using a Gaussian

distribution (see Figure 3.19) with an average of 20 ms. This makes the overall average

number of packets sent per second equal to 50. The average data rate from a single

node is 448 kbps . The network consists of four nodes that are sending data with

each node have an average data rate of 448 kbps. Making the total throughput of

the network averaged to 1792 kbps. For iteration two, the total number of packets

sent from each node was 83,500 making the total number of packets sent across the

network was 334,000. Again, ten runs are performed on each protocol to ensure

confidence in the results.

Table 4.10 displays the number of dropped packets for each protocol for each

of the ten runs of exponential iteration 2. The table lists the number of dropped

71

Table 4.10. Total Dropped Packets of Exponential Iteration 2

Run DNUC MME OSPF
1 2,891 63,189 70,727
2 2,169 52,281 71,418
3 2,703 57,027 106,547
4 1,650 63,353 98,372
5 2,485 51,190 75,937
6 2,820 57,279 84,696
7 2,701 59,144 98,762
8 2,895 66,680 91,304
9 2,044 66,309 73,612
10 2,692 60,570 90,110

Mean 2,505.0 59,702.2 86,148.5
Std Dev 417.63 5,369.16 12,846.3

Dropped Packet Percentage 0.75% 17.87% 25.79%

packets during each individual run along with the mean, standard deviation, and the

percentage of dropped packets. Two-tailed t-tests are performed on all three results

to determine the probability of null hypothesis, H, that the compared values have a

statistical significance. The p-value when DNUC is compared to MME is 1.0886-17.

The p-value when DNUC is compared to OSPF is 5.8816e-14. Finally, the p-value

when MME is compared to OSPF is 1.1119e-05. Similar to exponential iteration

1, all p-values are well below 5%, therefore the null hypothesis is rejected for each

comparison determining that there is no statistical significance between all data sets.

The p-values corresponding to DNUC are much lower than the p-value comparing

MME and OSPF when comparing MME and OSPF, the p-value is slightly higher

when compared to other iterations.

The results demonstrate again that DNUC is more efficient changing network

routes compared to MME and OSPF. DNUC dropped 95.80% less packets than MME

and 97.09% less packets than OSPF. Finally, MME dropped 30.70% less packets

than OSPF. Again, these results are consistent with results of all previous tests.

72

Exponential iteration 2 sends 66,800 more packets, which is an increase of 25% over

exponential iteration 1. With the increased number of packets sent and the larger

packet size, a larger number of dropped packets would be expected during exponential

iteration 2. Similar to the tests when the delay times are static and use a Gaussian

distribution, DNUC had a lower percentage of packets dropped during exponential

iteration 2 when compared to exponential iteration 1. MME and OSPF had a larger

number of dropped packets which is expected. As explained in the static delay time

results section, with the increased amount of traffic and the large amount of small

delay times, the router queue became saturated faster allowing the Kalman filter to

predict network congestion faster. With the Kalman filter noticing the congestion

faster, the DNUC changed the gateway faster and ultimately allow the transmission

of more packets prior to the link speed changing and dropping the remaining packets

in the queue. The amount of standard deviation is similar to those seen in previous

results where the larger number of lost packets implies a larger standard deviation.

With a larger average number of dropped packets, the results would display a larger

disparity between the total number of dropped packets.

Figure 4.29 displays the number of dropped packets in a scatter plot along with

a regression line to compare the results and determine the future trend of packet

loss. The regression lines show that all three protocols tend to have higher packet

loss as time continues. Even though the trends are all positive, OSPF and MME are

dropping more packets at a quicker rate than DNUC. If the tests continued, MME

and OSPF would tend to increase at a higher rate than DNUC. The variability of the

packets loss corresponds to the the standard deviation results shown in the previous

table. The regression lines show that for exponential iteration 2, OSPF was almost

mirroring MME while the regression line of DNUC does not appear to rise. The figure

shows that as in the static and Gaussian distribution delay time tests, OSPF has a

73

Figure 4.29. Scatter Plot of Exponential Iteration 2 Results

high amount of variability when compared to MME and DNUC.

Figure 4.30 shows the 95% confidence interval plot for both tests when using a

exponential distribution for delay times between packet transmissions. The three

data sets are color coded according to the legend. The blue line in each bar graph

shows the 95% confidence interval for the corresponding data set. The longer the

confidence interval is, the larger the standard deviation is for the data. The figure

demonstrates that the confidence interval between the three data sets do not overlap.

As shown in the 95% confidence interval plot, DNUC consistently has less packet

loss than both MME and OSPF while MME has less packet loss than OSPF. The

results match the results seen above. The difference between exponential iteration

1 and exponential iteration 2 shows that DNUC performs better during exponential

iteration 1 compared to exponential iteration 2 while MME and OSPF perform much

worse during exponential iteration 2. The standard deviations shown above have

74

Figure 4.30. Confidence Interval of Exponential Distribution Delay Time Results

similar results with the confidence intervals for their corresponding data sets. The

confidence interval matches the data above.

As in the static and Gaussian distribution delay time tests, visual inspection of

the tables and graphs demonstrate that DNUC consistently has less packet loss than

MME and OSPF in all cases. Between MME and OSPF, MME has less packet loss

than OSPF a majority of the time. MME’s design makes use of wireless ad-hoc

networks and OSPF was designed for use in static networks, the results make sense

that MME outperforms OSPF in this type of network.

75

4.7 Overall Results

The results obtained from the two different tests performed on three different

protocols clearly show that DNUC performed better than MME or OSPF and, in

most situations, MME performed better than OSPF. Since the MME design is for

use in wireless networks and the MikroTik router OS version of OSPF is intended for

use in static networks, MME should perform better in the network environment used

for this research.

After thorough investigation, the majority of traffic loss for DNUC was due to the

router dropping all queued packets when changing the link speed. Investigation also

revealed that roughly half of the packet loss of MME and OSPF was due to this same

reason. When performing tests on the three different protocols in this research, OSPF

used one gateway to transmit data roughly 95% of the time and the network link that

corresponds to the gateway OSPF is using is the highest capacity link roughly 33%

of the time, OSPF does not use the optimal link 62+% of the time. The gateway

that MME used to transmit traffic 90+% of the time was not the highest capacity

link available. DNUC on the other hand, determined the highest capacity link and

that interface was the gateway to transmit data until the Kalman filter discovered

network congestion. When congestion was found, the controller changed the gateway

to the interface corresponding to the highest capacity link found. Since DNUC is

always using the gateway corresponding to the interface with the highest capacity to

transmit data where MME and OSPF would rarely use the highest capacity link.

4.8 Conclusion

This chapter presents the analysis and results for the network traffic load tests and

experiments run during the course of this research. Simulation results demonstrate

that the overall network throughput increases with application of DNUC compared to

76

MME and OSPF routing protocols. Additionally, the test results indicate that overall

network throughput increased with the application of the MME protocol compared

to OSPF.

77

V. Conclusions

Military environments require highly dynamic MANETs to meet operational mis-

sion requirements. Military commanders rely on the timely delivery of critical bat-

tlespace information to make decisions quickly and accurately. Unfortunately, tra-

ditional MANET routing protocols do not provide the quality of service needed.

Furthermore, they do not implement active controls to minimize the impact of net-

work congestion. Using the router queue size along with the Kalman filter prediction

concept, the possibility exists to optimize network routes to minimize over-utilization

and increase network throughput.

5.1 Research Impact

Using the Kalman filter to predict queue size, this research demonstrated that

the possibility to optimize performance of the highly dynamic networks exists. The

DNUC implements network controls to provide quality of service in highly dynamic

network environments. The increased information flow can assist in information su-

periority. The routing solution required the Kalman filter and DNUC to achieve

success.

Even though the results demonstrate increased performance, this routing solution

would not be appropriate for every scenario due to the limitations of the network

components. Making considerations is necessary for the additional resources required

to implement and achieve this solution. Certain computing capabilities are required

for network nodes and the ground station. The nodes need to implement the Kalman

filter and the ground station must run the DNUC to make routing decisions.

78

5.2 Contributions

As previously identified, the goals of this research were to show that airborne

network environments can utilize the Kalman filter to discover degrading network

links and develop an algorithm that can exploit these predictions to increase network

throughput. The algorithm must satisfy the following criterion.

• Compute optimum routes based on predicted network traffic and topology.

• Use the network nodes and a Kalman filter placed on each node to monitor

the network, and detect and react to queue size predictions thus minimizing

network traffic loss due to link degradation.

• Minimize packet loss when compared to MME and OSPF routing protocols.

Demonstration of the algorithm’s effectiveness was accomplished through perfor-

mance of several tests running multiple simulations each. The tests show that DNUC

performs better than MME and OSPF in all test cases. When the network traffic av-

eraged 320 kbps, there were 93.6% less dropped packets compared to MME and 96.4%

less dropped packets compared to OSPF. When network traffic averaged 450 kbps,

there were 95.0% less dropped packets compared to MME and 96.2% less dropped

packets compared to OSPF.

5.3 Future Work

Although results discovered from this research are encouraging, further refinement

of methods specified in this document is encouraged. Specifically, future work should

include the following.

• Additional scenarios: use real-world airborne radios for the network links and

use actual distance between network nodes and determine if the results are

79

similar.

• Compare the performance of this algorithm with other MANET protocols such

as AODV, MANET extension of OSPF and OLSR.

• Develop an algorithm similar to multi-commodity flow to make use of the entire

bandwidth available to every node.

5.4 Summary

This research demonstrates that the possibility exists to use the Kalman filter to

predict network congestion and link degradation in dynamic network environments

and make network route changes whenever the network link speeds from any node

to all other nodes within communication range is known. Simulations demonstrate

that routing solutions implementing Kalman filter techniques minimize packet loss

and consequently increases network throughput.

80

Bibliography

1. Batman advanced documentation overview. World Wide Web Page. Available at
http://www.open-mesh.org/projects/batman-adv/wiki/Doc-overview(accessed
Dec 12, 2014).

2. Gig-battlefiled boundry. World Wide Web Page. Available at
https://me.stanford.edu/research/centers/ahpcrc/TA3Images.html(accessed July
11, 2014).

3. Global information grid. World Wide Web Page. Available at
https://www.nsa.gov/ia/programs/global information grid(accessed July 02,
2014).

4. Mikrotik manual. World Wide Web Page. Available at
http://wiki.microtik.com/wiki/Manual:TOC(accessed Dec 05, 2014).

5. Network flows 3 - multicommodity flows. World Wide Web Page. Available at
http://www.cs.jhu.edu/˜scheideler/courses/600.348 F03/(accessed Nov 11,
2014).

6. Performance of routing protocols for mobile ad-hoc networks. World Wide Web
Page. Available at
http://w3.antd.nist.gov/wctg/manet/docs/perf routing protocols.pdf(accessed
July 22, 2014).

7. M. Alqahtani. Stochatic prediction and feedback control of routers queue size in
virtual network environment. Master’s thesis, Air Force Institute of Technology,
2014.

8. J. Betances. Context aware routing management architecture for airborne net-
works. Master’s thesis, Air Force Institute of Technology, 2012.

9. I. Chakeres and L. Klein-Berndt. Aodvjr, aodv simplified. ACM SIGMOBILE
Mobile Computing and Communications Review, 6(3):100–101, 2002.

10. B. Cheng and S. Moore. A comparison of manet routing protocols on airborne
tactical networks. Military Communications Confrence (MILCOM), 2012.

11. M. Compton. The Network Tasking Order (NTO). pages 1–7, San Diego, CA,
2008. IEEE.

12. S. Das, C. Perkins, and D. Belding-Royer. Ad hoc on-demand distance vector
(aodv) routing. Network Working Group, 2003.

13. S. Dhurandher, M. Obaidat, and M. Gupta. A reactive optimized link state rout-
ing protocol for mobile ad hoc networks. International Conference on Electronic
Circuits and Systems, 2010.

81

14. Soga T. Takenaka Y Terashima H. Mineno, K and T. Mizuno. Integrated protocol
for optimized link state routing and localization: Olsr-l. Simulation Modeling
Practice and Theory, 19:1711–1722, 2011.

15. J. Haught. Adaptive quality of service engine with dynamic queue control. Mas-
ter’s thesis, Air Force Institute of Technology, 2011.

16. S. Julier and J. Uhlmann. A new extension of the Kalman filter to nonlinear
system. Signal Processing, Sensor Fusion, and Target Recognition VI, 3068, 1997.

17. L. Junhai, X. Danxia, and F. Mingyu. A survey of multicast routing protocols
for mobile ad-hoc networks. Communications Surveys and Tutorials, 11(1):78–91,
2009.

18. R. E. Kalman. An introduction to the kalman filter. Transaction of the ASME–
Journal of Basic Engineering, 3068:35–45, March 1960.

19. C. Kapoor and G. Sharma. To improve the qos in manets through analysis
between reactive and proactive routing protocols. Computer Science and Engi-
neering: An International Journal (CSEIJ), 1(3):51–62, 2011.

20. M. Karimi and D. Pan. Challenges for Quality of Service (QoS) in Mobile Ad-
hoc Networks (MANETs). In Wireless and Microwave Technology Conference
(WAMICON), Clearwater, FL, 2009. IEEE.

21. P. Maybeck. The Kalman filter: Introduction to concepts. Stochastic models,
estimation, and control, 1979.

22. K. Mingook. Stochastic estimation and control of queues within a computer
network. Master’s thesis, Air Force Institute of Technology, 2009.

23. Network Working Group. RFC5614 - Mobile Ad Hoc Network (MANET) Exten-
sion of OSPF Using Connected Dominating Set (CDS) Flooding, August 2009.
Available at
http:tools.ietf.org/rfc/rfc5614.txt.

24. K. Pandey and A. Swaroop. A comprehensive performance analysis of proactive,
reactive and hybrid manets routing protocols. International Journal of Computer
Science Issues, 8(3), 2011.

25. J. M. Pecarina. Creating an agent based framework to maximize information
utility. Master’s thesis, Air Force Institute of Technology, 2008.

26. A. Penttinen. Chapter 8 - queuing systems. Introduction to Teletraffic Theory,
1999.

27. A. Sang and S. Li. A predictability analysis of network traffic. 39:329–345, 2002.

82

28. B. Shivahare, C. Wahi, and S. Shivhare. Comparison of proactive and reactive
routing protocols in mobile adhoc network using routing protocol property. In-
ternational Journal of Emerging Technology and Advanced Engineering, 2, 2012.

29. N. Stuckey. Stochastic estimation and contol of queues within a computer net-
work. Master’s thesis, Air Force Institute of Technology, 2007.

30. Z. Wang and J. Crowcroft. Analysis of shortest-path routing algorithms in a
dynamic network environment. ACM SIGCOMM Computer Communication Re-
view, 22:63–71, 1992.

83

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

26–03–2015 Master’s Thesis Sept 2013 — Mar 2015

Airborne Network Optimization with Dynamic Network Update

14G260

15G142

Paul, Bradly S., Capt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MS-15-M-030

Air Force Office of Scientific Research, Information and Life Sciences Directorate
Attn: Robert J. Bonneau
875 N. Randolph St.
Arlington, VA 22203-1768
(703) 696-6565(DSN: 426-62078) Robert.Bonneau@afosr.af.mil

AFOSR/RTA

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

Modern networks employ congestion and routing management algorithms that can perform routing when network routes
become congested. However, these algorithms may not be suitable for modern military Mobile Ad-hoc Networks
(MANETs), more specifically, airborne networks, where topologies are highly dynamic and strict Quality of Service (QoS)
requirements are required for mission success. These highly dynamic networks require higher level network controllers
that can adapt quickly to network changes with limited interruptions and require small amounts of network bandwidth to
perform routing. This thesis advocates the use of Kalman filters to predict network congestion in airborne networks.
Intelligent agents can make use of Kalman filter predictions to make informed decisions to manage communication in
airborne networks. The network controller designed and implement in this thesis will take in the current and predicted
queue size values to make intelligent network optimization decisions. These decisions will enhance the overall network
throughput by reducing the number of dropped packets when compared with current static network and MANET
protocols.

Airborne network optimization,Dynamic Network Update Controller(DNUC),Mobile Ad-hoc Network(MANET),Queue
size prediction

U U U UU 97

Maj. Thomas. E. Dube, AFIT/ENG

(937) 255-3636, x4613; thomas.dube@afit.edu

